

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com

INDEX

Guide For Ordering Special Controls	2
Features of Daven Attenuators	. 3
General Introduction to Attenuators	3, 4
Mixer Design Considerations	۵, ۹
Mixer Circuits	5
Technical Data (Tables 1, 2 and 3)	6, 7, 8
Ladder Attenuators	9, 10
"T" and Balanced "H" Attenuators (General Description)	
"T" Attenuators and Precision "T" Networks	
Balanced "H" Attenuators and Precision Balanced "H" Networks	12
Potentiometers (General Description)	13
Potentiometers ±5%	14
Potentiometers ±2%	15
	16
Slide Attenuators	17
VU Meter Multiplier Networks	18
Decade Attenuators (Audio)	19
Impedance Matching Networks	19
Video Variable Attenuators	20
Decade Attenuator Units (Video)	21
Fixed Attenuators (General Description)	22
Fixed Attenuators	23
Tapped Fixed Networks	24
Multiple Input & Output Networks	25
Printed Circuit Attenuator	26
Stereo Attenuators	27
Interphone Amplifiers	28
Attenuation Networks (Audio Frequency)	29
Attenuation Networks (Radio Frequency)	30

E

PAGE 2

GUIDE FOR ORDERING SPECIAL CONTROLS

DAVEN CAN SUPPLY CONTROLS MADE TO SPECIFICATIONS

Attenuators having special shafts, bushings, decibels per step, impedances, steps of attenuation, etc. can be furnished when specific customer requirements dictate a "non-standard" attenuator. To facilitate ordering, pricing and delivery the following "Guide" is supplied.

INFORMATION REQUIRED TO ORDER A SPECIAL UNIT

	CIRCUIT VARIATIONS:	CIRCUIT: Send sketch of circuit, list resistors or state problem. DECIBEL LOSS: Decibel per step, total decibel loss, linear or tapered to infinity. IMPEDANCE: Both input and output. ACCURACY: Specify requirements. NOTE: Please advise any special requirements. For example: Frequency range, wattage, special accuracies, or direction of rotation for increasing attenutation.
	2 NON-STANDARD ACCESSORIES:	 DIAL: Is a dial required? If required and not standard supply sketch. KNOB: Is a knob required? DETENTS: Is an indexing device required? If required and not standard please supply necessary information. SHAFT: Special length, shape or style may be secured.
	3. TERMINAL ARRANGEMENT:	Left and right hand ears of terminals 1, 2 or 3 can be separated internally to make available a 3, 4, 5 or 6 terminal board. (See Fig. 1 for dotted links which can be separated.) Shield ground lug available upon request. (See Fig. 1.)
	4 INDICATOR LIGHT SWITCH:	Single pole double throw for operation of signal light or relay, mounted on rear cover of attenuator. This increases the over-all depth of the unit by approx. %". Specify if switch is required. Standard practice is to switch between last and next to last contact in extreme counter clockwise position. If special, specify position of operation of switch.
•	5 MOUNTING:	Either two hole or single hole mounting is available on all units. For $1\%''$ and $1\%''$ diameter controls single hole mounting is standard. For $1\%''$ diameter controls single hole mounting is standard ard in single deck controls and two hole mounting is standard in multi-deck controls. In all other controls two hole mounting is standard. When two hole mounting is supplied the following J and K dimensions apply: for $1\%''$ dia. units $J=1''$ and $K=6-32$ thd; for $1\%''$ dia. units $J=1\%''$ and $K=8-32$ thd.
G IN C C DUT J C C DUT J C		
		Standard: 其 A = 90° Two Hole Mounting Note – Standard "C" is 15/16" and "D" is omitted. Fig. 3 Single Hole Mounting Note – Standard "F" is 17/32" and "C" is 1-3/32", "G" and "H" are not included.
	Fig. No. A B C	D E F G H J Please supply information in this order, including tolerances.

Note 1. Omit dimension if it does not apply. For example, if no flat is required leave B and D blank.

01 J

Note 2. Locate dimension B with switch arm in C.C.W. position, if possible. If this cannot be done, specify location of switch arm. www.SteamPoweredRadio.Com

GENERAL FEATURES OF ALL DAVEN ATTENUATORS

1. ACCURACY: Individual resistors are calibrated to an accuracy of $\pm5\%,$ unless otherwise specified. Closer tolerance may be had on request.

2. FREQUENCY RESPONSE: For attenuators designed for audio frequency applications there is no appreciable change in db attenuation or variation in terminal impedance over the range 0 to 20 kc. Frequency characteristics of wider range radio frequency attenuators are listed on the individual pages.

3. INSERTION LOSS: Ladders—for 1:1 impedance ratio the initial loss is 6 db. For 1:2 impedance ratios, the initial loss is 2 db. "T" and Balanced "H" networks—for 1:1 impedance ratio the insertion loss is zero. For unequal impedances the insertion loss depends upon impedance ratio. Potentiometers—zero insertion loss when properly terminated.

4. IMPEDANCE CHARACTERISTICS: Ladders—see curves on page 9. "T" and Balanced "H" networks—the input and output impedance is

constant. Potentiometers — the input in constant when properly terminated and the output is variable.

5. SWITCH NOISE LEVEL: No indication above associated circuit and tube noises when switch is operated at extremely low levels.

6. DIRECTION OF ROTATION: For increasing attenuation, counter clockwise is standard and will be supplied unless specifically requested or unless otherwise specified on individual pages.

7. SWITCH CONSTRUCTION: Heavy duty solid silver alloy contacts, multi-leaf switch blades, and slip ring return. Each leaf of the enclosed switch arms employs separate pressure springs to provide self-alignment, KNEE-ACTION and equalized pressure. This insures low and uniform contact resistance. The KNEE-ACTION Totor is of tamper-proof construction. Leaf blade rotors are supplied when use of the KNEE-ACTION rotor is not possible. For specialized construction see Daven Printed Circuit Attenuators page 26. 8. SHAFT: 0.250 diameter ground and polished stainless steel. If nonstandard shaft is required, please list on order.

9. ROTOR LOCK: Metal pin assures rotor remains locked even if set screw should become loose.

10. BEARINGS: Shaft bearings are FREE TURNING sleeve type.

11. SHIELD: Totally enclosed dustproof construction. Indexing and stop mechanism in front compartment. Rear cover positive lock-on type with permanently connected push-to-release spring. This spring-lock withstands vibration tests. For specialized construction see Daven Printed Circuit Attenuators page 26.

12. MOUNTING: See page 2.

13. GOVERNMENT SPECIFICATIONS: Standard or special attenuators may be secured upon request to conform with most Government environmental requirements.

14. DIAL AND KNOB: Distinctive and durable black alumilite dial, and sturdy black phenolic skirt knob are available. Knob is fluted for ease of operation. Dials & knobs are not supplied unless specifically ordered.

When ordered—the following diameter dials and knobs are supplied unless otherwise specified.

ATTN. DIA.		13⁄8″	11/2"	1¾″	2 ¼″	2 ¾″
DIAL DIA.		21 /4″	21/4"	21/4"	2 ³ / ₄ "	2 ¾″
KNOB SKIRT I	DIA.	1%6"	1%6"	1%6"	2 1/16"	21/16"

Note: A $1\frac{3}{2}$ knob can be supplied for use without dial. Please specify.

NOTE: Many of the distinctive features of the apparatus shown herein are covered by issued U.S.A. Patents or have applications for patents pending.

GENERAL INTRODUCTION TO ATTENUATORS

The following section on attenuators lists Daven step-type controls for applications where dependability is of prime importance. The outstanding features of these units are extremely low switch noise level (below circuit noises), velvet-smooth control and a wide range of attenuation. These attenuators have received universal acceptance in broadcasting, recording and sound motion picture control installations. Many types are also employed in the research laboratories of leading universities, technical schools and industrial organizations.

VE

Daven attenuators were first introduced as level controls in audio program circuits. Many design modifications have been furnished to meet special application requirements. We have listed a wide variety of controls including video attenuators and special units for precision measuring equipment. Since these units are discussed separately, the following sections deal only with our conventional controls for use in audio circuits.

SUGGESTED USES:

MIXER DESIGN CONSIDERATIONS:

In addition to balanced or unbalanced considerations, in selecting an attenuator for a particular application, the output level and impedance of the signal source, band width and required output level and impedance must be carefully considered. Circuit noises (thermal shock and hum pick-up) originating in the first stages of amplification must be far below the signal voltage. How far above these circuit noises the input signal should be, depends upon the quality of the system. For a high quality system, at least 40 to 60 db program peaks above background noise is desirable. In addition, the wider the band (50 to 15,000 cycles for high quality) the higher the background noise.

For the above reasons, it is not possible to set a hard and fast rule and say that "T" networks should be used for low level mixing, and Ladder networks for high level mixing. However, when the output of the source, volume range, frequency band, number of channels to be mixed, output desired, etc., are known for a particular application, then the best type of control can be selected.

The following tabulation on parallel type mixers and block diagram are given to illustrate a suggested method of deciding whether to use low level or high level mixing, and the type of controls to select:

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com

ATTENUATOR CIRCUITS:

There are two general classifications in this section:

- (1) Those designed for use in unbalanced circuits (one side of the line is at zero or ground potential).
- (2) Those designed for balanced circuits (both sides of the line are above ground).

Under each of these general groups (unbalanced and balanced), attenuators are listed by circuit types, e.g., "T", "Ladder", "Balanced H", "Balanced Ladder", etc. Each classification and circuit has a particular application for which it is best suited. In the following table, we have listed the recommended uses for each type of unit. To avoid confusion, we are stating here our interpretation of several of the terms used. In this catalog, a low level mixer controls the signal between the source and the preamplifier, a high level mixer controls the signal between the preamplifier and the main amplifier. Low impedance circuits are those having impedances below 1,000 ohms.

NO. OF	DB LOSS I	N MIXERS	TOTAL DB LOSS IF MASTER IS USE						
CHANNELS	"T"	LADDER	"T"	LADDER					
2	6.0	12.0	6.0	18.0					
3	9.5	15.5	9.5	21.5					
4	12.0	18.0	12.0	24.0					
5	14.0	20.0	14.0	26.0					
6	15.6	21.6	15.6	27.6					
7	16.9	22.9	16.9	28.9					
8	18.1	24.1	18.1	30.1					

If the number of required channels is known, then consider the following:

FOR EXAMPLE:

If (B) is found or estimated to be 20 db and an 8 channel mixer is required, then low level mixing is questionable, and it is recommended that preamplifiers be used for each channel (high level mixing). If, however, only a 6 channel mixer is required, then low level mixing will be satisfactory, provided "T" networks are used. For 4 or less channels, Ladders can be used. If a master is used it should be a "T." NOTE: Various mixer circuits are illustrated on page 5.

The parallel type has been considered above, since this is the most popular type.

SUGGESTED MIXER CIRCUITS

DESIGN NOTES:

- 1. For individual channels we recommend tapered controls without detents. For master gain, we suggest a linear control with detents.
- 2. Ground the "C" of each individual channel.
- When using 1:1 ratio ladders in each channel add 6 db to min. loss tabulated below. When using a ladder also for a master gain add 12 db to min. loss tabulated below.

TABLE 1

Relation Between Decibels and Current, Voltage and Power Ratios.

(a) To find current or voltage loss or gain ratio equivalent to a given number of decibels, find required number of decibels in decibel (voltage) column and read corresponding ratio in loss or gain column.

(b) To find power loss or gain ratio equivalent to a given number of decibels, find required number of decibels in decibel (power) column and read corresponding ratio in loss or gain column.

(c) To find the number of decibels equivalent to a given loss or gain, find the required ratio in the loss or gain column and read the corresponding number of decibels in the decibel (voltage) column.

(d) To find the number of decibels equivalent to given voltage loss or gain, find the required ratio in the loss or gain column and read the corresponding number of decibels in the decibel (power) column. $N(decibel) = 10 \log n (P/P)$

N (decibels) = 10 log (P_1/P_2)

If the two voltages or currents under consideration are at the same impedance:

N (decibels) = 20 log 10 (E₁/E₂)

DECIBEL (VOLTAGE)	LOSS	GAIN	DECIBEL (POWER)	DECIBE (VOLTAGE		GAIN	DECIBEL (POWER)	DECIBEL (VOLTAGE) LOSS	GAIN	DECIBEL (POWER)	DECIBE (VOLTAG	L E) LOSS	GAIN	DECIBEL (POWER)
.0 .1 .2 .3 .4 .5 .6 .7 .8 .9	1.0000 .9886 .9772 .9661 .9550 .9441 .9333 .9226 .9120 .9061	1.000 1.012 1.023 1.035 1.047 1.059 1.072 1.084 1.096 1.109	.0 .05 .10 .15 .20 .25 .30 .35 .40 .45	5.0 .1 .2 .3 4 5.6 .7 .8 .9	.5623 .5559 .5495 .5433 .5370 .5309 .5248 .5188 .5188 .5129 .5070	1.778 1.799 1.820 1.841 1.862 1.884 1.905 1.928 1.928 1.950 1.972	.50 .55 .60 .65 .70 .75 .80 .85 .90 .95	10.0 .1 .2 .3 .4 .5 .6 .7 .8 .9	.3162 .3126 .3090 .3055 .3020 .2985 .2951 .2917 .2884 .2851	3.162 3.199 3.236 3.273 3.311 3.350 3.388 3.428 3.467 3.508	5.00 .05 .10 .15 .20 .25 .30 .35 .40 .45	15.0 .1 .2 .3 .4 .5 .6 .7 .8 .9	.1778 .1758 .1738 .1718 .1698 .1698 .1660 .1641 .1622 .1603	5.623 5.689 5.754 5.821 5.888 5.957 6.026 6.095 6.166 6.237	.50 .55 .60 .65 .70 .75 .80 .85 .90 .95
1.0 .1 .2 .3 .4 .5 .6 .7 .8 .9	.8913 .8810 .8710 .8610 .8511 .8414 .8318 .8222 .8128 .8035	1.122 1.135 1.148 1.161 1.175 1.189 1.202 1.216 1.230 1.245	.50 .65 .70 .75 .80 .85 .90 .95	6.0 .1 .2 .3 .4 .5 .6 .7 .8 .9	.5012 .4955 .4898 .4842 .4786 .4732 .4677 .4624 .4571 .4519	1.995 2.018 2.042 2.065 2.089 2.113 2.138 2.163 2.188 2.213	3.00 .05 .10 .15 .20 .25 .30 .35 .40 .45	11.0 .1 .2 .3 .4 .5 .6 .7 .8 .9	.2818 .2786 .2754 .2723 .2692 .2661 .2630 .2600 .2570 .2541	3.548 3.589 3.631 3.673 3.715 3.758 3.802 3.846 3.890 3.936	.50 .55 .60 .65 .70 .75 .80 .85 .90 .95	16.0 .1 .2 .3 .4 .5 .6 .7 .8 .9	.1585 .1567 .1549 .1531 .1514 .1496 .1479 .1462 .1445 .1429	6.310 6.383 6.457 6.531 6.607 6.683 6.761 6.839 6.918 6.998	8.00 .05 .10 .15 .20 .25 .30 .35 .40 .45
2.0 .1 .2 .3 .5 .5 .6 .7 .8 .9	.7943 .7852 .7762 .7674 .7586 .7499 .7413 .7328 .7244 .7161	1.259 1.274 1.288 1.303 1.318 1.334 1.349 1.365 1.380 1.396	1.00 .05 .10 .15 .20 .25 .30 .35 .40 .45	7.0 .1 .2 .3 .4 .5 .6 .7 .8 .9	.4467 .4416 .4365 .4315 .4266 .4217 .4169 .4121 .4074 .4027	2.239 2.265 2.291 2.317 2.344 2.371 2.399 2.427 2.455 2.483	.50 .55 .60 .65 .70 .75 .80 .85 .90 .95	12.0 .1 .2 .3 .4 .5 .6 .7 .8 .9	.2512 .2483 .2455 .2427 .2399 .2371 .2344 .2317 .2291 .2265	3.981 4.027 4.074 4.121 4.169 4.217 4.266 4.315 4.365 4.365 4.416	6.00 .05 .10 .15 .20 .25 .30 .35 .40 .45	17.0 .1 .2 .3 .4 .5 .6 .7 .8 .9	.1413 .1396 .1380 .1365 .1349 .1334 .1318 .1303 .1288 .1274	7.079 7.161 7.244 7.328 7.413 7.499 7.586 7.674 7.762 7.852	.50 .55 .60 .65 .70 .75 .80 .85 .90 .95
3.0 .1 .2 .3 .4 .5 .6 .7 .8 .9	.7079 .6998 .6918 .6839 .6761 .6683 .6607 .6531 .6457 .6383	1.413 1.429 1.445 1.462 1.479 1.496 1.514 1.531 1.549 1.567	.55 .60 .65 .70 .75 .80 .85 .90 .95	8.0 .1 .2 .3 .4 .5 .6 .7 .8 .9	.3981 .3936 .3890 .3846 .3802 .3758 .3715 .3673 .3631 .3589	2.512 2.541 2.570 2.600 2.630 2.661 2.692 2.723 2.754 2.786	4.00 .05 .10 .20 .25 .30 .35 .40 .45	13.0 .1 .2 .3 .4 .5 .6 .7 .8 .9	.2239 .2213 .2188 .2163 .2138 .2138 .2113 .2089 .2065 .2042 .2018	4.467 4.519 4.571 4.624 4.624 4.624 4.732 4.786 4.842 4.898 4.955	.50 .55 .60 .65 .70 .75 .80 .85 .90 .95	18.0 .1 .2 .3 .4 .5 .6 .7 .8 .9	.1259 .1245 .1230 .1216 .1202 .1189 .1175 .1161 .1148 .1135	7.943 8.035 8.128 8.222 8.318 8.414 8.511 8.610 8.710 8.811	9.00 .05 .10 .15 .20 .25 .30 .35 .40 .45
4.0 .1 .2 .3 .5 .6 .7 .8 .9	.6310 .6237 .6166 .6095 .6026 .5957 .5888 .5821 .5754 .5689	1.585 1.603 1.622 1.641 1.660 1.679 1.698 1.718 1.738 1.738 1.758	2.00 .05 .10 .15 .20 .25 .30 .35 .40 .45	9.0 .1 .2 .3 .4 .5 .6 .7 .8 .9	.3548 .3508 .3467 .3428 .3388 .3350 .3311 .3273 .3236 .3199	2.818 2.851 2.884 2.917 2.951 2.985 3.020 3.055 3.090 3.126	.50 .55 .60 .65 .70 .75 .80 .85 .90 .95	14.0 .1 .2 .3 .4 .5 .6 .7 .8 .9	.1995 .1972 .1950 .1928 .1905 .1884 .1862 .1841 .1820 .1799	5.012 5.070 5.129 5.188 5.248 5.309 5.307 5.433 5.495 5.559	7.00 .05 .10 .15 .20 .25 .30 .35 .40 .45	19.0 .1 .2 .3 .4 .5 .6 .7 .8 .9	.1122 .1109 .1096 .1084 .1072 .1059 .1047 .1035 .1023 .1012	8.913 9.016 9.120 9.226 9.333 9.441 9.550 9.661 9.772 9.886	.50 .55 .60 .65 .70 .75 .80 .85 .90 .95
DECIBE (VOLTAG	iL iE)	LOSS			GAIN		DECIBEL (POWER)	DECIB (VOLTA	EL GE)	LOSS			GAIN		DECIBEL (POWER)
20.0	NUT 0-20 SHI ONE TO 10 30 USE NUM 0-20 SHI TWO TO	.1000 THE S MBERS / DB, BI FT POIN S SINC DB = DB = OI THE S MBERS / DB, BI THE S MBERS / DB, BI THE S SINC DB = DB =	AS JT T. E 1162 J3162 AME AS JT T T. E	USE TI NUMBE 0-20 DI SHIFT ONE S TO THI THUS 3 10 DB USE TH NUMBE 0-20 DI SHIFT TWO S TO THI THUS 3 10 DB	POINT TEP E RIGHT. SINCE = 3.162 = 31.62 100		10.00 HIS OLUMN EEPEATS VERY 0 DB NSTEAD F VERY 0 DB 20.00 HIS 0LUMN EEPEATS VERY 0 DB NSTEAD F VERY 0 DB	60. 80.	US SHI TO THI 10 70 70 70 70 70 70 8 8 10 8 90	DB =	AS UT TT PS FT. E 3162 0003162 AME AS AME AS UT IT S S FT.	USE T NUMB 0-20 D SHIFT THREE TO TH THUS 10 DB 70 DB 7	STEPS E RIGHT. SINCE = 3.162 = 3162. 0,000 HE SAME ERS AS B, BUT POINT STEPS E RIGHT.		30.00 HIS SOLUMN EEPEATS VERY 0 DB NSTEAD F VERY 0 DB 40.00 HIS SOLUMN EEPEATS VERY 0 DB NSTEAD F VERY 0 DB S0.00

PAGE 7

TABLE 2

In the following tabulation is recorded the relation between the new VU, the old 6 mw and 12.5 mw reference levels. Although there is a definite repetition of figures, values are given in order to eliminate calculations. Values not listed in this table may be obtained as follows:

REFERENCE LEVEL

Given VU. to obtain:

(a) Level of 6 mw at 500 ohms subtract 6.9897 db.

REFERENCE LEVEL

- (b) Level of 6 mw at 600 ohms subtract 7.7815 db.
- (c) Level of 12.5 mw at 500 ohms subtract 10.1771 db.
- (d) Level of 12.5 mw at 600 ohms subtract 10.9688 db.
- Given 6 mw. in 500 ohm reference to obtain:
 - (a) Level of 1 mw in 600 ohms add 6.9897 db.
 - (b) Level of 6 mw in 600 ohms subtract 0.7918 db. (c) Level of 12.5 mw in 500 ohms subtract 3.1874 db.
 - (d) Level of 12.5 mw in 500 ohms subtract 3.9791 db.

REFERENCE LEVEL

.001 W. IN 600 OHMS DECIBELS	R.M.S. VOLTS	WATTS	.006 W. IN 500 OHMS DECIBELS	.006 W. IN 600 OHMS DECIBELS	.0125 W. IN 500 OHMS DECIBELS	.0125 W. IN 600 OHMS DECIBELS
-10	.24495	.0001000	-16.9897	-17.7815	-20.1771	-20.9688
- 9	.27485	.0001259	-15.9897	-16.7815	-19.1771	-19.9688
- 8	.30838	.0001585	-14.9897	-15.7815	-18.1771	-18.9688
- 7	.34742	.0001995	-13.9897	-14.7815	-17.1771	-17.9688
- 6	.38823	.0002512	-12.9897	-13.7815	-16.1771	-16.9688
- 5	.43557	.0003162	11.9897	-12.7815	-15.1771	15.9688
- 4	.48873	.0003981	10.9897	-11.7815	-14.1771	14.9688
- 3	.54838	.0005012	9.9897	-10.7815	-13.1771	13.9688
- 2	.61531	.0006310	8.9897	- 9.7815	-12.1771	12.9688
- 1	.69036	.0007943	7.9897	- 8.7815	-11.1771	11.9688
0	.77460	.0010000	6.9897	- 7.7815	-10.1771	10.9688
+ 1 23 45	.86913 .97519 1.0949 1.2275 1.3773	.001259 .001535 .001995 .002512 .003162	5.9897 4.9897 3.9897 2.9897 1.9897	- 6.7815 - 5.7815 - 4.7815 - 3.7815 - 2.7815	- 9.1771 - 8.1771 - 7.1771 - 6.1771 - 5.1771	9.9688 8.9688 7.9688 6.9688 5.9688
6 7 8 9 10	1.5454 1.7323 1.9458 2.1830 2.4495	.003981 .005012 .006310 .007943 0.01000	$\begin{array}{c} - & 0.9897 \\ + & 0.0103 \\ 1.0103 \\ 2.0103 \\ 3.0103 \end{array}$	$\begin{array}{r} - 1.7815 \\ - 0.7815 \\ + 0.2185 \\ 1.2185 \\ 2.2185 \end{array}$	$\begin{array}{r} - & 4.1771 \\ - & 3.1771 \\ - & 2.1771 \\ - & 1.1771 \\ - & 0.1771 \end{array}$	- 4.9688 - 3.9688 - 2.9688 - 1.9688 - 0.9688
+11	2.7485	0.01259	+ 4.0103	+ 3.2185	+ 0.8229	+ 0.0312
12	3.0838	0.01585	5.0103	4.2185	1.8229	1.0312
13	3.4742	0.01995	6.0103	5.2185	2.8229	2.0312
14	3.8823	0.02512	7.0103	6.2185	3.8229	3.0312
15	4.3557	0.03162	8.0103	7.2185	4.8229	4.0312
16 17 18 19 20	4.8873 5.4838 6.1531 6.9036 7.7460	0.03981 0.05012 0.06310 0.07943 0.1000	9.0103 10.0103 11.0103 12.0103 13.0103	8.2185 9.2185 10.2185 11.2185 12.2185	5.8229 6.8229 7.8229 8.8229 9.8229 9.8229	5.0312 6.0312 7.0312 8.0312 9.0312
+21	8.6913	0.1259	+14.0103 15.0103 16.0103 17.0103 18.0103	+ 13.2185	+ 10.8229	+ 10.0312
22	9.7519	0.1585		14.2185	11.8229	11.0312
23	10.949	0.1995		15.2185	12.8229	12.0312
24	12.275	0.2512		16.2185	13.8229	13.0312
25	13.773	0.3162		17.2185	14.8229	14.0312
26	15.454	0.3981	19.0103	18.2185	15.8229	15.0312
27	17.323	0.5012	20.0103	19.2185	16.8829	16.0312
28	19.458	0.6310	21.0103	20.2185	17.8229	17.0312
29	21.830	0.7943	22.0103	21.2185	18.8229	18.0312
30	24.495	1.0000	23.0103	22.2185	19.8229	19.0312
+31	27.485	1.2589	+24.0103 25.0103 26.0103 27.0103 28.0103	+23.2185	+20.8229	+20.0312
32	30.838	1.5849		24.2185	21.8229	21.0312
33	34.742	1.9953		25.2185	22.8229	22.0312
34	38.823	2.5119		26.2185	23.8229	23.0312
35	43.557	3.1623		27.2185	24.8229	24.0312
36	48.873	3.9811	29.0103	28.2185	25.8229	25.0312
37	54.838	5.0119	30.0103	29.2185	26.8229	26.0312
38	61.531	6.3096	31.0103	30.2185	27.8229	27.0312
39	69.036	7.9433	32.0103	31.2185	28.8229	28.0312
40	77.460	10.000	33.0103	32.2185	29.8229	29.0312
+ 41	86.913	12.589	+ 34.0103	+ 33.2185	+30.8229	+ 30.0312
42	97.519	15.849	35.0103	34.2185	31.8229	31.0312
43	109.49	19.953	36.0103	35.2185	32.8229	32.0312
44	122.75	25.119	37.0103	36.2185	33.8229	33.0312
45	137.73	31.623	38.0103	37.2185	34.8229	34.0312
46 47 48 49 50	154.54 173.23 194.58 218.30 244.95	39.811 50.119 63.096 79.433 100.000	39.0103 40.0103 41.0103 42.0103 43.0103	38.2185 39.2185 40.2185 41.2185 42.2185	35.8229 36.8229 37.8229 38.8229 39.8229 39.8229	35.0312 36.0312 37.0312 38.0312 39.0312

www.SteamPoweredRadio.Com

TABLE 3

The following table shows the loss obtained in resistive networks when changing from one impedance to another.

In column "1" is recorded the impedance ratios. An example of this would be, a 500 to 1000 ohm ratio would be considered as 2.0, or a 1000 to 500 would also be considered as 2.0. In column "2" is recorded the minimum loss possible if the impedance is matched in both directions.

In column "3" is recorded the loss caused from improper termination. An example of this is the loading of a 500 ohm line with 1000 ohms.

Losses for values of ratios not shown in this table may be obtained as follows:

Let R ² = impedance ratio	For Min. Loss "T" Matching	For Impedance Mismatch Loss
Let N = decibel loss	$N = 20 \log_{10} (R + \sqrt{R^2 - 1})$	

COLUMN 2 COLU Column 1 Minimum Loss Imped Ratio Z/Z "t" Matching Mismatc	MN 3 ANCE COLUMN 1 CH LOSS RATIO Z/Z	COLUMN 2 Minimum Loss "T" Matching	COLUMN 3 Impedance Mismatch Loss	COLUMN 1 Ratio Z/Z	COLUMN 2 MINIMUM LOSS "T" MATCHING	COLUMN 3 Impedance Mismatch Loss
1.0 0. .0 .1 2.705 .0 .2 3.770 .0		14.77 14.83 14.88	4.025 4.085 4.105	22.0 .5 23.0	19.33 19.42 19.52	7.795 7.895 7.980
.3 4.548 .0 .4 5.180 .1 .5 5.723 .1	360 .2 778 .3 223 .4 72 .5	14.92 14.97 15.05	4.160 4.200 4.255	.5 24.0 .5	19.62 19.73 19.83	8.055 8.140 8.213
.6 6.190 .2 .7 6.615 .3 .8 6.990 .3	40 .6 08 .7 66 .8	15.10 15.15 15.20	4.285 4.320 4.360	25.0	19.91 20.00	8.300 8.380
AND AND ADDRESS AND ADDRESS ADDRE	10 9.0	15.25 15.30	4.400 4.440	26.0 .5 27.0 .5	20.10 20.17 20.24 20.30	8.460 8.540 8.630 8.680
.2 8.235 .6 .3 8.490 .7 .4 8.740 .8	60 .1 32 .2 04 .3	15.36 15.40 15.44 15.50	4.480 4.510 4.550 4.600	28.0 .5 29.0	20.30 20.40 20.49 20.55	8.760 8.845 8.920
.6 9.185 .9 .7 9.388 1.0	60 .1 32 .2 04 .3 83 .4 62 .5 30 .6 88 .7 88 .8 .9	15.50 15.54 15.60 15.67	4.640 4.660 4.700	.5 30.0	20.63 20.70	8.970 9.040
.8 9.580 1.0 .9 9.775 1.1 3.0 9.960 1.2	44	15.70 15.74	4.740 4.780	.5 31.0 .5	20.78 20.87 20.94	9.095 9.160 9.250
3.0 9.960 1.2 .1 10.01 1.3 .2 10.30 1.3 .3 10.47 1.4 .4 10.62 1.5 .5 10.76 1.5 .6 10.90 1.6 .7 11.04 1.7 .8 11.18 1.8 .9 11.31 1.8	87 .2	15.79 15.87 15.95	4.800 4.880 4.950	32.0 .5 33.0	21.00 21.07 21.13	9.320 9.360 9.440
.4 10.62 1.5 .5 10.76 1.5 .6 10.90 1.6 .7 11.04 1.7		16.05 16.13	5.010 5.090	.5 34.0 .5	21.21 21.28 21.34	9.480 9.560 9.600
	07 .2 68 .4	16.22 16.31 16.38	5.150 5.220 5.290 5.340	35.0 .5 36.0	21.40 21.46 21.51	9.660 9.710 9.770
4.0 11.43 1.9 .1 11.56 2.0 .2 11.68 2.0 .3 11.80 2.1		16.47 16.53 16.63	5.410 5.470	.5 37.0 .5	21.57 21.67 21.73	9.840 9.890 9.940
4.0 11.43 1.9 .1 11.56 2.0 .2 11.68 2.0 .3 11.80 2.1 .4 11.88 2.2 .5 12.02 2.2 .6 12.13 2.3 .7 12.23 2.3 .8 12.33 2.4 .9 12.43 2.4	00 .2 66 .4	16.70 16.77 16.84	5.545 5.600 5.650	38.0 .5 39.0	21.77 21.83 21.90	10.00 10.05 10.10
.7 12.23 2.3 .8 12.33 2.4 .9 12.43 2.4	31 90 13.0	16.92 16.97	5.700 5.750	.5 40.0	21.93 21.97 22.07	10.17 10.21 10.28
	.4	17.03 17.12 17.18	5.820 5.875 5.930	.5 41.0 .5 42.0	22.11 22.15 22.20	10.20 10.31 10.37 10.42
.3 12.83 2.7 .4 12.91 2.7 .5 13.00 2.8	78 37 14.0	17.25 17.32 17.38	5.990 6.050	.5 43.0 .5	22.26 22.32 22.36	10.47 10.51 10.57
.6 13.08 2.8 .7 13.17 2.9 .8 13.26 2.9	132 .4 197 .6	17.38 17.43 17.50 17.57	6.093 6.150 6.205	44.0 .5	22.40 22.47	10.60 10.66
	15.0	17.63 17.78	6.248 6.300 6.420	45.0 .5 46.0	22.51 22.54 22.60	10.69 10.77 10.81
.3 13.65 3.2 .4 13.71 3.2	240 293 16.0	17.92 18.05	6.550 6.666	.5 47.0 .5 48.0	22.67 22.70 22.73 22.77	10.83 10.88 10.93 10.97
.5 13.79 3.3 .6 13.87 3.4 .7 13.92 3.4	100 153 17.0	18.18 18.32	6.790 6.890	48.0 .5 49.0 .5	22.83 22.90 22.93	11.02 11.05 11.10
.9 14.07 3.5	540 18.0 500 .5	18.43 18.57	7.010 7.110	50.0 55.0	22.96 23.38	11.14 11.55
.2 14.27 3.6 .3 14.32 3.7	530 583 19.0 735 .5	18.68 18.80	7.220 7.340	60.0 65.0 70.0	23.56 24.11 24.44 24.74	11.83 12.23 12.55
.4 14.40 3.7 .5 14.46 3.8 .6 14.51 3.8 .7 14.58 3.9	778 310 20.0 353 .5	18.92 19.02	7.425 7.510	75.0 80.0 85.0 90.0	24.74 25.02 25.12 25.53	12.84 12.97 13.37 13.62
.7 14.58 3.5 .8 14.65 3.9 .9 14.70 3.5	908 21.0 985 .5	19.13 19.22	7.600 7.700	90.0 95.0 100.0	25.53 25.77 25.99	13.62 13.81 14.07

-1

LADDER ATTENUATORS

DEFINITION: The term Ladder Attenuator refers to that group of volume controls consisting of consecutive " π " resistor sections combined to supply the required terminal impedances and reduction in volume. The advantage of this type of control is its mechanical simplicity.

CIRCUITS: An unbalanced network is recommended if one side of the circuit is at ground potential or may be grounded. Circuits in which both sides of the line are at equal potential above ground require balanced networks. The circuit of a balanced ladder is essentially two unbalanced networks coupled together on a common shaft. One single or unbalanced ladder is inserted in each side of the line and the center point, or "C", may be grounded.

CUEING: In addition to the normal attenuation function, Daven ladder controls may be obtained with a built-in cueing circuit. In these controls, provision is made at the extreme attenuation position for connecting the incoming signal to a cue circuit before FADING IN the signal. By this means, a program can be smoothly BROUGHT IN at the right time without the operation of any additional switches. A lug on the terminal board is provided for connecting to the cueing system (Patented). In the attenuator terminal board there are six terminals available. A balanced ladder attenuator requires seven terminals. In balanced ladder attenuators with the cueing feature the required seventh terminal is made available by internally grounding the center point (common) to the frame and providing a case ground terminal in the location shown in Figure 1, Page 2. Since the cueing circuit operates from the input side of the control, do not interchange the input (IN) and output (OUT) terminals when wiring the control into the circuit. To order an attenuator with the cueing feature add the letter Q between the type letters and the control number. For example an LA-350-G with the cueing feature would become an LAQ-350-G.

USE: Ladder attenuators may be used as volume controls in both low and high level multi-channel mixers, and in special types of measuring equipment. However, their chief use is as individual channel controls in high level mixers. Caution should be exercised in laying out the circuits when using this type of control in high quality speech equipment because of the insertion loss of 6 db and variable output impedance on the first few steps.

TYPICAL CHARACTERISTICS OF A LADDER NETWORK.

CIRCUIT OF UNBALANCED LADDER

CIRCUIT OF BALANCED LADDER.

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com

BALANCED LADDER ATTENUATORS

					TER	MINA	LIM	PED/	ANCE					ATTEN	UATION		and the	DEGREE	
USE	TYPE	A	B	C	ĸ	KU	KG	D	E	EF	F	G	NO. OF STEPS	DB PER STEP	TAPER	DETENTS	CONTACT Spacing	OF ROTATION	
When space is a major con-	BAL-255													2	Last Steps To Cut-off	No	15°		
sideration. BAL-255: mixer controls. BAL-256, 257, 258:	BAL-256												20	2 (off pos.)			Between	300°	
master gain controls.	BAL-257						1.0				1			2 (no off pos.)	No	Attached	Centers		
muster gun controlor	BAL-258													1.5 (no off pos.)					
Den in DAL OFF hat	BAL-730													1.5	Last Steps To Cut-off	No	11.25°		
Same as series BAL-255 but with 10 additional steps of	BAL-731												30	1.5 (off pos.)		1. 1. 1.	Between	337.5°	
attenuation.	BAL-732													1.5 (no off pos.)	No	Attached	Centers	77	
	BAL-733													2 (off pos.)	· · · · · · · · ·		1		
In high quality broadcasting	BAL-330													1.5	Last Steps To Cut-off	No	11.25°		
and recording systems where	BAL-331							1					30	1.5 (off pos.)			Between	337.5°	
greater control range or small db steps are needed.	BAL-332												1.1	1.5 (no off pos.)	No	Attached	Centers	15	
	BAL-333													2 (off pos.)					

UNBALANCED LADDER ATTENUATORS

		10.14			T	ERM	IIN/	L I	MPE	DAN	CE					ATTEN		DEGREE		
USE	TYPE	A	AH	B	BJ	c	ĸ	ĸu	KG	D	E	EF	F	G	NO. OF STEPS	DB PER STEP	- TAPER	DETENTS	CONTACT Spacing	OF ROTATION
Low impedance controls for broadcast and public address	LA-350															2	Last Steps To Cut-off	No	15°	
systems. Small size for port-	LA-351														20	1.5 (off pos.)			Between	300°
able equipment. LA-350: mixer controls. LA-351, 352,	LA-352						1		1							2 (off pos.)	No	Attached	Centers	
353: master gain controls.	LA-353															2 (no off pos.)		1.000		
Same as series LA-350 but	LA-130															1.5	Last Steps To Cut-off	No	11.25°	
provides 10 additional steps	LA-131														30 2	2	To Cut-on		Between	337.5°
of attentuation.	LA-132															1.5 (off pos.)	No	Attached	ttached Centers	
	LA-133															2 (off pos.)		Attacheu		
High quality equipment re- quiring a wide range of con-	LA-730															1.5	Last Steps To Cut-off	No	11.25°	
trol. LA-730, 731: mixer	LA-731														30	2	To cut-on		Between	337.5°
controls. LA-732, 733: master gain controls or measuring	LA-732															1.5 (off pos.)	No	Attached	Centers	
equipment.	LA-733								1							2 (off pos.)				
Smallest attenuator avail- able. Portable amplifiers and	LA-120														20	2	Last Steps To Cut-off	No	15° Between	300°
able. Portable amplifiers and tape recorders where size and weight are important.	LA-122															2 (off pos.)	No	Attached	Centers	

KEY TO AVAILABILITY & TERMINAL IMPEDANCES

Standard Available as special order

SERIES BAL-255 & BAL-730

21/16

SERIES LA-730

 $\pm .015$

Tol.

■ .250 ■ DIA.

15/

8-32 TAP 2 HOLES

►1%

21/4 + 1/16.

LETTER CODE	A	АН	В	BJ	н	С	к	KU	KG	D	E	EF	F	G
TERMINAL IMPEDANCE	30/30	30/60	50/50	50/100	75/75	125/125	150/150	150/300	150/600	200/200	250/250	250/500	500/500	600/600
INSERTION LOSS	6	2	6	2	6	6	6	2	9.7	6	6	2	6	6

RESISTOR ACCURACY: $\pm 5\%$ CONTINUOUS RATING: 0.6 watts PEAK AUDIO RATING: Up to 2.5 watts

SERIES LA-350 & LA-130

Tol. Dec. \pm .001 Fractions \pm 1/32

PAGE 10

DEFINITION: Under this group we list those types which have zero insertion loss for 1:1 impedance ratios and constant impedance, both in and out on all steps of control. These networks may be inserted in a transmission system without introducing insertion losses. For unequal impedance ratio controls an insertion loss greater than zero is necessary. The amount depends upon the impedance ratio. The "T" control is used where one side of the line is grounded and the "H" where neither side of the line is grounded. They will not operate properly otherwise.

DESCRIPTION: The Daven Company offers two types of "T" attenuators, the "Bridged T" and the "T". Since both types are electrically and mechanically interchangeable, in the circuit, we list them all as "T" controls. The "Bridged T" consists of two variable and two fixed resistors and requires two rows of contacts. Over a certain range of attenuation and impedance, due to its electrical simplicity, this type offers advantages over the "T". The "T" employs three variable resistors and requires three rows of contacts. In the case of the "H" type network, we also offer the "Bridged H" and "H" form employing two or three sets of variable resistors, and a corresponding number of rows of contacts for each section.

CUEING: These networks may be obtained with a built-in cueing circuit. In these controls provision is made at the extreme attenuation position for connecting the incoming signal to a cue circuit before "FADING IN" the signal. By this means, a program can be smoothly "BROUGHT IN" at the right time without the operation of any additional switches. A lug on the terminal board is provided for connecting to the cueing system.

USE: These networks may be used as volume controls in low and high level multi-channel mixers and all types of measuring equipment where precision control is required.

					1						INU	JA)R	<u> </u>		IATION			
					IE	RMIN	I	IMP	EDAI	T		T	SPA C		NO. OF	DB PER	UATION		CONTACT	DEGREE
USE	TYPE	A	B	C	K	KU	KF	KG	D	E	EF	F	F	3	STEPS	STEP	TAPER	DETENTS	SPACING	ROTATION
Compact 20 step "Bridged T" unit for locations where mountings	T-255*															2	Last Steps To Cut-off	No		
space is at a premium, i.e., portable equipment. Type T-255 is a mixer control. Types, T-256,	T-256*														20	2 (off pos.)			15° Between	300°
T-257 and T-258 are used as main gain controls, or in measuring equipment when equal decibel	T-257														20	2 (no off pos.)	No	Attached	Centers	
steps are required over the complete range.	T-258															1.5 (no off pos.)				
For general sound control work.	T-320*															2 (off pos.)	No	Attached		
Since it has zero insertion loss	T-321*															2	Last Steps To Cut-off	No		
and constant impedance in and out, it is ideally suited for both	T-322								T			Т				2 (no off pos.)	TO OUT ON		15°	
low and high level mixing. Series	T-323										1				20	1.5 (no off pos.)			Between	300°
T-320, T-322 and T-323 are main gain controls. Series T-321 is	T-324															1 (no off pos.)	No	Attached	Centers	
supplied with a taper on the last	T-325															0.5 (no off pos.)		, including d		
three steps before cutoff, and is a twenty step mixing control.	T-326												-	_		0.1 (no off pos.) 3 (off pos.)				
	T-328				_		一個		_	-	The second		-			3 (off pos.)				
	T-730*															1.5	Last Steps To Cut-off	No		
	T-731*															1.5 (off pos.)	Nie	Attached	11.25° Between Centers	
	T-732									T					30	2 (off pos.)	No Last Steps To Cut-off	Attached		
Sturdy compact attenuator for wide range of control in a	T-733						10.00									2		No		337.5°
limited space.	T-734															1 (no off pos.)				
	T-735															0.5 (no off pos.)	No	Attached		
	T-736		i Manel													0.1 (no off pos.)		Attached		1 A A
	T-738															1 (off pos.)			1	
Provides ten additional steps of attenuation which may be used	T-330*															1.5	Last Steps To Cut-off	No		
to reduce the attenuation per step, or extend the overall range.	T-331*															1.5 (off pos.)		Attached		
For example, in mixer applica- tions, type T-330 has a reduction of attenuation per step. Type	т-332									T						2 (off pos.)	No	Attached		
T-333 is an example of extending the attenuation range. For main	т-333															2	Last Steps To Cut-off	No	11.25°	227 50
gain position, types T-331 and T-332 are used. Types T-334,	T-334														30	1 (no off pos.)			Between Centers	337.5°
T-335, T-336 and T-338 are used in measuring equipment. The large number of steps of attenua-	T-335															0.5 (no off pos.)	No	Attached		
tion provided in this series, offers a means of obtaining appreciable	T-336						ST.									0.1 (no off pos.)		ļ		
total attenuation in relatively small steps.	T-338															1 (off pos.)				
Used in high quality recording	T-345	150														0.5	Last Stars			
and broadcast control work where	T-346															0.75	Last Steps To Cut-off	No	7.5°	
an abrupt change in signal level during a sustained note may	T-347						18					T			45	1			Between Centers	
superimpose an objectionable	T-348									-		-	-			0.5 (no off pos.)	No	Attached	Centers	3
superimpose an objectionable	T-349															1 (no off pos.)				

PRECISION "T" ATTENUATORS

		1	TER	MINAL	IMPEDAN	NCE	S. 199		ATTE	NUATION		3-10-1 C	DEGREE
USE	TYPE	B	ĸ	D	E	F	G	NO. OF STEPS	DB PER STEP	TAPER	DETENTS	CONTACT SPACING	OF ROTATION
	T-520	-							2				
Designed for precision measuring	T-521								1.5	No		15°	
Designed for precision measuring equipment or wherever 1%	T-522				-			20	1	No (no off pos.)	Attached	Between	300°
accuracy is required.	T-523								0.5	(Centers	
	T-524				L. Lean				0.1				
	T-530								2				
	T-531								1.5	Ne		/11.25°	
Same as series T-520 but with 10	T-532							30	1	No (no off pos.)	Attached	Between	337.5°
additional steps of attenuation.	T-533							T I	0.5	(ine err peer)		Centers	
	T-534	ž		1				1	0.1				

RESISTOR ACCURACY: "T" Attenuators \pm 5%; Precision "T" Attenuators \pm 1% CONTINUOUS RATING: 0.6 watts ~ PEAK AUDIO RATING: Up to 2.5 watts

KEY TO AVAILABILITY & TERMINAL IMPEDANCES

Standard Available as special order

LETTER CODE	A	АН	В	BJ	н	С	к	KU	KG	D	E	EF	F	G
TERMINAL IMPEDANCE	30/30	30/60	50/50	50/100	75/75	125/125	150/150	150/300	150/600	200/200	250/250	250/500	500/500	600/600
INSERTION LOSS	0	7.7	0	7.7	0	0	0	7.7	11.4	0	0	7.7	0	0

Special impedances or decibel steps, other than those shown are available

BALANCED "H" ATTENUATORS

	1414-448			1	ERM	INAL	IMP	DAN	CE				ATT	ENUATION			DEGREE
USE	Туре	A	B	C	ĸ	KU	KG	D	E	F	G	NO. OF STEPS	DB PER STEP	TAPER	DETENTS	CONTACT Spacing	OF
Two "Bridged T" networks	BH-320												2				
mounted on a common shaft. Each deck is a complete	BH-321												1.5	No		_ 15°	
unbalanced "T" attenuator	BH-322				1							20	1	(no off pos.)	Attached	Between Centers	300°
which is connected to each side of the balanced trans-	BH-323				1								0.5			ochicis	
mission line. Each "T" is designed to have one half	BH-330												2				a.
the impedance but the same	BH-331											30	1.5	No		11.25°	007 50
attenuation as the "Balanced	BH-332											30	1	No (no off pos.)	Attached	Between Centers	337.5°
H". For example, a 600 ohm "H" is made up of two 300 ohm "T" sections.	BH-333										•	÷	0.5			Conters	
Since these units have zero	BH-730												2				
insertion loss and constant	BH-731						1					20	1.5	No		11.25°	007 50
impedance in and out they	BH-732							1				30	1	(no off pos.)	Attached	Between Centers	337.5°
are suited for low and high level mixing.	BH-733												0.5			Gentera	

*Used in installations where there is limited mounting space.

PRECISION BALANCED "H" ATTENUATORS

				T	ERMI	NAL	IMPE	DAN	CE				ATT	ENUATION			DEGREE
USE	TYPE	A	в	c	ĸ	KU	KG	D	E	F	G	NO. OF STEPS	DB PER STEP	TAPER	DETENTS	CONTACT Spacing	OF
	BH-520												. 2				
Designed for precision meas-	BH-521						3984						1.5			15°	
uring equipment or wherever	BH-522											20	1	No (no off pos.)	Attached	Between	300°
1% accuracy is required.	BH-523												0.5	(10 011 pos.)		Centers	
	BH-524												0.1				
	BH-530												2				
Same as series BH-520 but	BH-531								1.1				1.5			11.25°	
with 10 more steps of	BH-532					1120						30	1	No (no off pos.)	Attached	Between	337.5°
attenuation.	BH-533												0.5	(10 011 pos.)		Centers	
	BH-534	181										100	0.1	1			

KEY TO AVAILABILITY & TERMINAL IMPEDANCES

Standard Available as special order

LETTER CODE	A	АН	в	BJ	н	С	к	KU	KG	D	E	EF	F	G
TERMINAL IMPEDANCE	30/30	30/60	50/50	50/100	75/75	125/125	150/150	150/300	150/600	200/200	250/250	250/500	500/500	600/600
INSERTION LOSS	0	7.7	0	7.7	0	0	0	7.7	11.4	0	0	7.7	0	0

Special impedances or decibel steps other than those shown are available.

NOTE: A secure means is provided for fastening front and rear units together in a totally enclosed dust cover. By depressing the release springs located on the side of the case adjacent to the terminal strip, the rear dust cover can be removed for cleaning the rear contacts; or the entire rear section can be removed for access to the front section. Since the front and rear sections form a continuous electrical unit, excellent electrical shielding is also attained.

Tol. Dec. ±.001 Fractions ±1/32 www.SteamPoweredRadio.Com

Tol. Dec. \pm .001 Fractions \pm 1/32

^^

DAVEN POTENTIOMETERS (POTENTIAL DIVIDERS)

DEFINITION: The term potentiometer has been adopted by the electronics and radio industry to mean the potential divider. For this reason, the potentiometers referred to in this section are not voltage measuring devices, but step type potential dividers.

CIRCUIT: The potentiometer circuit consists of a number of calibrated resistors in series, the extremes of which are connected to the terminals designated "IN" and "C". The slider arm of the circuit is connected to the terminal marked "OUT" (For a circuit diagram see page 4). If a fixed voltage is impressed between "IN" and "C" required ratios of this fixed voltage appear between "OUT" and "C". In the potentiometers listed in the following section, all resistor steps have been calculated on the basis of operating the output into an open circuit, such as the grid of a Class A amplifier tube.

DESCRIPTION AND USE: It is not the intention of the Daven Company to formulate the circuit design. However, since our potentiometers are calibrated to operate into an open circuit, we should like to offer the following suggestions:

- 1. Check to see what the grid input impedance is at the top frequency. For example, for high gain triodes this is apt to be so low that a low impedance potentiometer would be required.
- 2. Check to see that the capacity to ground on both "IN" and "OUT" leads are at a minimum. If possible, have these leads short.
- 3. Check to see that no grid current is flowing. There may be only a few micro amps in the circuit, but this is enough to cause the control to appear noisy.

All Daven potentiometers are step type, employing heavy duty silver alloy contacts, slip rings and self-cleaning multi-leaf switch blades. Two general types of potentiometers are offered—the unbalanced or standard potentiometer, and the balanced or dual type. The former type has one row of contacts, and one slip ring, and is usually employed in the grid circuit of single ended amplifiers. The dual type utilizes either two rows of contacts and two slip rings on either single or a double decked unit, and is generally used as a grid control in push-pull or balanced circuits. This type is also occasionally used in two progressive stages of amplification in single ended amplifiers.

CUEING: Since the variable arm of the potentiometer is connected to the "OUT" position instead of the "IN" position of the circuit, the regular "built-in" cueing feature, available on other Daven controls, will not function in this circuit. Therefore, if the cueing feature is required, it can be provided by utilizing an added miniature switch or by special arrangement of the contacts.

POTENTIOMETERS – RESISTOR ACCURACY: ± 5%

				Т	ERMI	NAL	IMPE	DANO	E				ATTEN	UATION			DEGREE
USE	TYPE	L	M	P	R	s	т	w	x	Y	z	NO. OF STEPS	DB PER STEP	TAPER	DETENTS	CONTACT Spacing	OF .
Smallest step type attenua- tors available. Portable,	CP-120											20	2 (off pos.)	No	Attached	15° Between	300°
lightweight equipment. No cueing position.	CP-124											20	2	Last Steps To Cut-off	No	Centers	300
	CP-350												2 (off pos.)				
Potential dividers in portable	CP-352												1.5 (off pos.)	No	Attached	15°	
equipment. Compact design	CP-353											20	3 (off pos.)			Between	300°
makes them suitable for small mounting space.	CP-354												2	Last Steps To Cut-off	No	Centers	
	CP-355				ht a								5 (no off pos.)	No	Attached		
	CP-130	141											2 (off pos.)	No	Attached		
Same as series CP-350 but with 10 additional steps of	CP-132											30	1.5(off pos.)		Attacheu	11.25° Between	337.5°
attenuation.	CP-133											30	1.5	Last Steps		Centers	337.5
	CP-134	Hill.									28		2	To Cut-off	No		
Two separate potentiometers concentrically located on	DCP-255												2	Last Steps To Cut-off	No	150	
single deck. Because there is little shielding between	DCP-256										1.00.02	20	2 (off pos.)			15° Between	300 [.] °
the two, unit is recom-	DCP-257												2 (no off pos.)	No	Attached	Centers	4.
mended for controlling push- pull grids.	DCP-258												1.5 (no off pos.)	i i i	Attuoned		
Same as series DCP-255 but	DCP-730												1.5	Last Steps To Cut-off	No	11.25°	
with 10 additional steps of	DCP-731											30	1.5 (off pos.)			Between	337.5°
attenuation.	DCP-732												1.5 (no off pos.)	No	Attached	Centers	
	DCP-733												2 (off pos.)		Attached		
Double ganged potentiom- eters, individually shielded.	CPD-350												2 (off pos.)				
Designed for control of push	CPD-351												1.5 (off pos.)	No	Attached	15°	
pull grids. Each deck also may be used as an unbal-	CPD-353											20	3 (off pos.)			Between Centers	300°
anced potentiometer in separate amplifier stages.	CPD-354												2	Last Steps To Cut-off	No		
	CPD-130	_											2 (off pos.)	No	Attached	11.050	
Same as series CPD-350 but with 10 additional steps of	CPD-132	and the owner where the party is not										30	1.5 (off pos.)		rittaoneu	11.25° Between	337.5°
attenuation.	CPD-133	the second se				_					1.15		1.5	Last Steps	No	Centers	007.0
	CPD-134												2	To Cut-off			

Special impedances or decibel steps other than those shown are available.

KEY TO AVAILABILITY & TERMINAL IMPEDANCES
Standard Available as special order

LETTER CODE	L	м	Р	R	S	т	w	x	Y	Z
TERMINAL IMPEDANCE	5,000	10,000	20,000	25,000	50,000	100,000	200,000	250,000	500,000	1,000,000

SERIES CP-120

NOTE: SERIES DCP-255 & DCP-730—There are two rows of three terminals available, six in all. Three in one row are wired to one side of the balanced potentiometer, the three in the other row are wired to the other side of the balanced potentiometer. Unless otherwise specified, the two "C" terminals will be internally connected.

The terminal impedances listed indicate the impedance per circuit. For example, a DCP-255-L consists of two 5,000 Ω potentiometers, and a DCP-730-P consists of two 20,000 Ω potentiometers.

NOTE: SERIES CPD-350 & CPD-130-The terminal impedances listed above indicate the impedance per deck.

CONTINUOUS RATING: 0.6 watts, provided voltage does not exceed 100 volts.

PEAK AUDIO RATING: Up to 2.5 watts, provided voltage does not exceed 200 peak volts.

129/2-

1/2:

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com SERIES DCP-730 & DCP-255 2 HOLES 1 1/1 MAX. 1 1/1 250 DIA. 250 DIA. 250 2/4 + 1/1 2/16

				TER	MINA	LIM	PEDA	NCE				ATTEN	UATION			DEGREE
USE	TYPE	L	м	P	R	s	т	w	x	Y	NO. OF STEPS	DB PER STEP	TAPER	DETENTS	CONTACT Spacing	OF ROTATIO
	P-350											2				
Portable equipment. Ex- tremely useful where mount-	P-351										20	1.5	No (off pos.)	Attached	15°	
ing space is at a premium.	P-353										20	3			Between Centers	300°
	P-354											2 .	Last Steps To Cut-off	No		
	P-630											2	No	Attached		
Studio equipment for	P-632										30	1.5	(off pos.)	Attacheu	11.25° Between	337.5°
smooth volume regulation.	P-635										50	1.5	Last Steps	No	Centers	337.5
	P-634											2	To Cut-off			
Two separate potentiom- eters mounted on single	DSP-330											2				
deck having two rows of silver alloy contacts and two	DSP-331										30	1.5	No		11.25°	227 50
slip rings. Because of little shielding, these units are	DSP-332										30	1	(off pos.)	Attached	Between Centers	337.5°
recommended for controlling push-pull grids.	DSP-333											3				
Same as series DSP-330 except 10 less steps.	DSP-255											2	Last Steps To Cut-off	No		
Caution must be exercised in using this type of control	DSP-256										20	2 (off pos.)			15° Between	300°
in single-ended multi-stage applications, where high	DSP-257									95 A A		2 (no off pos.)	No	Attached		000
gain circuits are required.	DSP-258									N.		1.5 (no off pos.)				
Two series controls in tan- dum. Each deck individually	DP-350											2				
shielded and balanced to ground. Used to control	DP-351										20	1.5	No (off pos.)	Attached	15° Between	300°
push-pull grids. Each deck can also be used in succes- sive stages of a single ended	DP-353										20	3			Centers	300
amplifier system.	DP-354											2	Last Steps To Cut-off	No		

POTENTIOMETERS – RESISTOR ACCURACY: ± 2%

8-32 TAP 2 HOLES 17/16Max 2 HOLES 17/16Max 2 HOLES 17/16 17/

NOTE: SERIES DSP-330

There are two rows of three terminals available, six in all. Three in one row are wired to one side of the balanced potentiometer, the three in the other row are wired to the other side of the balanced potentiometer. Unless otherwise specified, the two "C" terminals will be internally connected.

Special impedances or decibel steps other than those shown are available.

The terminal impedances listed indicate the impedance per circuit. For example, a DSP-330-P consists of two $20,000\Omega$ potentiometers.

NOTE: SERIES DSP-225 & DP-350

There are two rows of three terminals available, six in all used in series DSP-255. Three in one row are wired to one side of the balanced potentiometer, the three in the other row are wired to the other side of the balanced potentiometer. Unless otherwise specified, the two "C" terminals will be internally connected. Series DP-350 have three individual terminals for each potentiometer.

CONTINUOUS RATING: 0.6 watts, provided voltage does not exceed 100 volts.

PEAK AUDIO RATING: Up to 2.5 watts, provided voltage does not exceed 200 peak volts.

www.SteamPoweredRadio.Com

Tol. Dec. \pm .001 Fractions \pm 1/32

PAGE 17

SLIDE ATTENUATORS

- Finger fitting knob moves in a straight line
- Maximum of 4 ounces of pressure required to move knob
- Velvet smooth slide action
- Long life silver alloy contacts and wiper arms used
- Units protected against dirt and foreign objects
- Requires little panel and cabinet space

Daven Slide Attenuators are used in program mixing where the operator has to control multiple units with one hand. They are available in any input and output impedance and supplied with a rear connector for ease of connection and disassembly. A removable side plate permits access to contacts.

Escutcheons (dials) which require a low tolerance rectangular opening and can be easily mounted are available. The escutcheon mounts the attenuator and trims the panel opening. Special dials for mounting 1, 2, 3 and 4 units adjacent to each other are also available.

		Түре					RMIN			
1	LADDER	UNBALANCED LADDER	"Т"	STEREO LADDERS	K	D	E	F	G	ATTENUATION
	LA-825	BAL-825	T-825	2LA-825						20 steps 2 db per step. No taper, last step cut-off (infinity).
	LA-826	BAL-826	T-826	2LA-826						20 steps 2 db per step. Tapered to infinity.
_	LA-835	BAL-835	T-835	2LA-835						30 steps 2 db per step. No taper, last step cut-off (infinity).
_	LA-836	BAL-836	T-836	2LA-836						30 steps 1½ db per step. Tapered to infinity.

Cueing positions are available on all attenuators in this series.

	ТҮРЕ		TI	RMIN/ PEDAN	L CE		
POTENTIOMETER	DUAL POTENTIOMETER	s	Т	w	X	Y	ATTENUATION
CP-825	DCP-825						20 steps, 2 db per step. No taper, last step cut-off (infinity).
CP-826	DCP-826						20 steps, 2 db per step. Tapered to infinity.
CP-835	DCP-835						30 steps, 2 db per step. No taper, last step cut-off (infinity).
CP-836	DCP-836						30 steps, 2 db per step. Tapered to infinity.

CONTINUOUS RATING: 0.6 watt PEAK AUDIO RATING: Up to 2.5 watts RESISTOR ACCURACY: ±5%

KEY TO TERMINAL IMPEDANCES

LETTER CODE	к	D	E	F	G	S	т	w	x	Y
TERMINAL	150/150	200/200	250/250	500/500	600/600	50,000	100,000	200,000	250,000	500 ,000

Special impedances or decibel steps other than those shown are available.

PAGE 18

VU METER MULTIPLIER NETWORKS

SERIES T-994 AND TA-1000

The VU meter is the accepted standard for program monitoring. In operation this meter is bridged across the 600Ω line with an appropriate attenuator and fixed resistor inserted between the line and meter. The use of an attenuator is recommended to extend the applications of the meter as follows:

1. Extension of meter range.

In practice, the signal level is such that the range of the meter has to be exceeded.

2. Impedance varies with voltage across meter terminals.

The meter alone, is a non-linear device and unless it is isolated by a resistive network, it will add distortion to the program.

- 3. Ballistic characteristics vary with connected load. For correct pointer action, the meter load impedance should be 3900Ω .
- 4. Direct measurement of power level.

The db dial reading of the attenuator plus scale reading of the meter is a measurement of the level being transmitted.

FIGURE I. CONVENTIONAL METHOD OF USING VU METER AND ATTENUATOR

"A" is a zero adjuster approximately 800 to 1000Ω , set near the center position. "B" is a fixed resistor, approximately 3200Ω , selected so that with "A" at mid position, "A" + "B" equals 3600Ω . "C" is the meter multiplier, 3900Ω input and 3900Ω output impedance.

TYPE	NO. OF Steps	DB PER STEP	CONTACT Spacing	DECIBEL RANGE	IMPEDANCE	NOTES
T-994-1				1mw + 4 to + 24 & off.	7100/3900	Zero adjust rheostat required.
T-994-2				1mw + 4 to + 24 & off.	7500/3900	No zero adjust rheostat required.
T-994-3	12		12°		3900/3900	External 3600Ω series resistor required.
T-994-4				+4 to $+26$ and off.	7100/3900	Zero adjust rheostat required.
T-994-5				Constant Pro-	7500/3900	No zero adjust rheostat required.
TA-1000-1		2			7100/3900	Zero adjust rheostat required.
TA-1000-2				1mw + 4 to + 40 & off.	7500/3900	No zero adjust rheostat required.
TA-1000-3					6900/3900	Zero adjust rheostat required.
TA-1000-4	20		15°		7100/3900	Zero adjust rheostat required.
TA-1000-5				+4 to $+42$ and off.	3900/3900	External 3600 Ω series resistor required.
TA-1000-6					7500/3900	No zero adjust rheostat required.

Special meter multipliers for non-standard meters will be supplied to your specifications. NOTE: Clockwise rotation for increased attenuation is standard in the above networks.

CONTINUOUS RATING: 0.6 watts.

RESISTOR ACCURACY: \pm 1%

PEAK AUDIO RATING: Up to 2.5 watts.

DIMENSIONS

	DIA.	DEPTH
Series T994	2¼" +½", -0"	01/ // - 1/ //
Series TA-1000	2 ³ / ₄ " ± ¹ / ₃₂ "	$2\gamma_{6}'' \pm \gamma_{32}''$

DECADE ATTENUATORS

SERIES 2500

The Series 2500 Decade Attenuator units are step type precision networks, designed for use in measuring equipment. These units are particularly adaptable for use in noise meters, audiometers, transmission measuring sets and attenuation networks.

All the controls in this series have ten steps of attenuation. The frequency characteristics are essentially flat from zero to 50 kc. Positive, accurate detents are supplied on all units. The mechanical construction of these networks, is the same high quality as supplied on all Daven attenuators.

Electrically, these units are offered in three circuit types—Potentiometers, "T" and Balanced "H". Resistors are calibrated to an accuracy of ± 1 %. For best results, it is recommended that the power input be limited to 0.5 watt or less. If a higher level input is required, please specify this information when ordering.

				7
10 DB STEPS 100 DB Total	1.0 DB STEPS 10 DB TOTAL	0.1 DB Steps 1 DB Total	CIRCUIT	IMPEDANCE
2506	2503	2500	Potentiometer	50,000
2507	2504	2501		100,000
2508	2505	2502		200,000
2513	2511	2509	"т"	600
2514	2512	2510		500
2523	2522	2521		150
2519	2517	2515	Balanced "H"	600
2520	2518	2516		500
2526	2525	2524		150

Special impedances or decibel steps other than those shown are available CONTACT SPACING: 15° between centers

SERIES 3200

TOTAL DEGREE OF ROTATION: 150°

IMPEDANCE MATCHING NETWORKS

DIMENSIONS							
	DIA.	DEPTH					
"T" NETWORKS	01/1	21/16"					
"BH" NETWORKS	23/4"	313/16"					

MOUNTING: Two 8-32 tapped holes, 11/2" apart.

Impedance matching networks comprise a series of "T" or "BH" networks offering a constant input and series of output impedances. These networks may be used as a series of input and a constant output impedance by reversing the "IN" and "OUT" leads. Two forms are herein listed—one in which the db loss is constant, and one in which the db loss is the next highest multiple of 5 db above the minimum possible loss.

Since this type of network does not introduce objectionable phase shift, unwanted frequency discrimination, and does not pick up strays in low level circuits between 0 and 50 kc or higher, it is an ideal method of matching impedances in transmission measuring sets and other forms of precision test equipment.

		INPUT	OUTPUT IMPEDANCE								RESISTOR	
TYPE	CIRCUIT	IMPEDANCE	30	50	125	150	200	250	500	600		ACCURAC
3202	Т	600	20	20	15	15	10	10	5	0	h	
3203	Т	600	20	20	20	20	20	20	20	20		
3200	Т	500	20	20	15	15	10	10	0	5		No and tak
3201	Т	500	20	20	20	20	20	20	20	20		
3208	Т	300	20	15	10	10	10	5	10	10		
3209	т	300	20	20	20	20	20	20	20	20		
3212	Т	150	15	10	5	0	5	10	15	15		
3213	Т	150	15	15	15	15	15	15	15	15		
3206	BH	600	20	20	15	15	10	10	5	0	DB LOSS	±1%
3207	BH	600	20	20	20	20	20	20	.20	20		
3204	BH	500	20	20	15	15	10	10	0	5		
3205	BH	500	20	20	20	20	20	20	20	20		
3210	BH	300	20	15	10	10	10	5	10	10	- Charles and	
3211	BH	300	20	20	20	20	20	20	20	20		
3214	BH	150	15	10	5	0	5	10	15	15		
3215	BH	150	15	15	15	15	15	15	15	15	7	

www.SteamPoweredRadio.Com

Special impedances or decibel steps other than those shown are available CONTACT SPACING: 15° between centers TOTAL DEGREE OF ROTATION: 105° .

VIDEO VARIABLE ATTENUATORS SERIES V-250

Precise and dependable these attenuators are recommended for use in wide band equipment, television video circuits where a wide frequency range without change of impedance is of special importance and in laboratory standards. The same sturdy switch construction found in all Daven step type audio attenuators is used in these wide band units. General construction and mounting dimensions are interchangeable with our standard attenuators.

SPECIFICATIONS

CIRCUIT: "T" network SWITCH: Rotary step type TERMINAL IMPEDANCE ACCURACY: Within $\pm 2 \frac{1}{2} \%$ FREQUENCY CHARACTERISTICS: Essentially flat from 0 to 10 mc

CONNECTORS

ТҮРЕ	RECEPTACLES SUPPLIED	CABLE PLUGS REQUIRED
VA	MC-60 *	MC-50 *
VB	UG-185/U **	UG-260/U **
VC	Standard lug termina	board supplied

When ordering indicate type desired-

Example: VA-250 indicates MC-60 receptacle supplied, MC-50 cable plugs required. Receptacles are supplied—cable plugs available at slight additional cost. Types other than those specified supplied upon request.

* Indicates commercial type number

** Indicates Army-Navy type number series "BNC."

SERIES	NUMBER OF STEPS	DB PER Step	CHARACTERISTIC	DB Total	STANDARD IMPEDANCE	CONTACT Spacing
V-250	10	1		10	A STATES	15°
V-251	10	2		20		15°
V-252	20	1		20	Contraction of the	7.5
V-253	20	2	LINEAR	40	75	7.5
V-254	20	0.5		10		7.5
V-255	45	0.2		9		7.5
V-256	45	0.1		4.5	Caracity 1	7.5
V-257	20	0.1		2.0		7.5

Special impedances or decibel losses may be obtained on request.

Fractions $\frac{1}{22}$ except "A" dimension on V-250 & V-251 which is $+\frac{1}{4}$, -0

DECADE ATTENUATOR UNITS – VIDEO SERIES 1790 FEATURES

- Accuracy over a range extending into the low radio frequency spectrum.
- Wide range of attenuation available in small decibel steps.
- The detent is positive, and the stops prevent over-travel.
- Decades are individually shielded.
- Scientifically designed switch blades and contacts are employed to insure low contact resistance and continued accuracy.

- The use of precision non-inductive resistors and a carefully designed circuit reduces frequency discrimination to a minimum.
- Networks are available for various impedance requirements.

The Series 1790 Decade Units are the same as the individual controls employed in the Series 790 and 795 Attenuation Networks.

Each unit provides 10 steps of attenuation, and is offered in 0.1, 1.0 and 10.0 db steps. Both "T" and Balanced "H" circuits are available.

These controls are enclosed in a brass case which provides R.F. shielding. A ground lug is located adjacent to the terminal board for grounding the shields of the external leads.

The electrical circuit employs scientifically designed switches using low loss dielectric, solid silver alloy contacts and low stray capacity self-wiping silver blades. The use of precision non-inductive resistors and a carefully designed circuit reduces frequency discrimination to a minimum.

The Series 1790 Decade Units may be built into precision measuring equipment for use over the audio-video range. Their use is particularly recommended where definitely known amounts of attenuation at a constant impedance are required.

RESISTOR ACCURACY: $\pm 0.25\%$.

ATTENUATION ACCURACY: The maximum error is ± 0.1 db at 1000 cps when terminated by a pure resistance. FREQUENCY ERROR: For Series 1790 and 1791, maximum error up to 10 mc is ± 0.2 db. Adequate shielding must be provided on the input and output leads for higher frequency work.

For Series 1792, 10 db. per step units (100 db total) maximum error is \pm 0.5 db up to 0.5 mc. Lower values of attenuation can be used on frequencies between 0 and 10 mc without appreciable error.

CIRCUIT: "T" network or Balanced "H" network.

UND	
DIAM.	DEPTH
2¾"	21/16"
23/4"	213%6"
23/4"	6%"
	DIAM. 2¾" 2¾"

DIMENCION

MAXIMUM INPUT POWER: 1 watt.

SWITCHES: Heavy duty solid silver alloy is used for the contacts, multi-leaf switch rotor, and slip ring return. Each leaf of the switch arms employ separate pressure to provide self alignment and equalized pressure, to insure low and uniform contact resistance.

MOUNTING: Each decade unit is completely shielded in a dust-proof brass case.

ROTATION: Clockwise rotation increases attenuation

			* NOTATI	ON. OIOCRI		in moreases	atton	ution							
							TE	RMIN/	L IMP	EDAN	CE		ATTENUATIO	N	
	KEY TO	TERMINAL		CES		ТҮРЕ	в	н	к	F	G	NO. OF Steps	DB PER STEP	NETWORK	CONTACT Spacing
	KET TO			OL0		VT-1790							0.1		
						VT-1791							1.0	"Т"	
LETTER	В	н	к	F	G	VT-1792						10	10		15°
CODE						VH-1790					1.1.1	10	0.1		
TERMINAL	50/50	75/75	150/150	500/500	600/600	VH-1791							1.0	Balanced "H"	
IMPEDANCE	30730	13/13	150/150	300/300	000/000	VH-1792							10		

LABORATORY MEASUREMENTS OF A TYPICAL PRODUCTION UNIT-TYPE VT-1792-G, 10 DB STEPS, 100 DB TOTAL

			± DB ERROR	AT FREQUENCY		
DIAL READING IN DB	1 KC	10 KC 💉	50 KC	200 KC	500 KC	1 MC
0 10 20 30 40 50 60 70 80 80 90	0 .015 .020 .025 .030 .040 .050 .060 .065 .075 .080	0 .015 .020 .025 .030 .040 .050 .060 .065 .075 .080	0 .015 .020 .025 .030 .040 .050 .060 .065 .075 .080	0 .030 .070 .125 .140 .160 .180 .200 .230 .230 .260 .280	0 .020 .220 .220 .230 .230 .240 .350 .350 .500	0 .110 .200 .225 .220 .235 .240 .350 .500 1.500

DAVEN FIXED ATTENUATORS

DEFINITION: The term fixed attenuator or "pad" refers, in this section, to that group of resistive networks having fixed impedances and loss. This group differs from the variable attenuators in that the loss is fixed, and there is no switch mechanism or other moving parts.

DESCRIPTION: Daven fixed attenuators employ accurately calibrated non-inductive resistors, rigidly mounted inside a metal shield. Six types of cases are offered, covering a variety of mountings and a wide range of sizes. In each of these cases several circuit types are available, with a wide range of impedance and loss.

USES: There are numerous applications for fixed attenuators in the communications field. Below is a partial listing of the more common uses:

1. To equalize incoming signal levels.

Example—Four inputs to a multi-channel mixer, #1 at a level of -70, #2 at a level of +10, #3 at a level of -40, and #4 at a level of -60. To operate the mixer controls over their correct range an 80 db, a 30 db, and a 10 db loss pad should be used in #2, #3 and #4 input circuits.

2. To bridge a program line for monitoring purposes.

Example-Program line impedance of 600 ohms, level of +4. To monitor, use bridging pad across line having input impedance of 10,000 to 20,000 ohms, and output impedance of 600 ohms.

3. To isolate one section of a line from another.

Example—Two 600 ohm lines from output of preamplifier. In switching a line must be shorted. To keep from interrupting the program on one line, while the other is being switched, a $600/600\Omega$ isolation pad of 12 to 20 db may be used in each line. If the output of either pad is shorted, the other program will not be interrupted.

4. To change impedance.

Example—Line impedance is 500Ω . To change to 600Ω insert a $500/600\Omega$ fixed pad.

To combine two or more incoming lines into a single outgoing line, or to divide one incoming line into two
or more outgoing lines.

Example-Incoming line 600 ohms, to divide into three outgoing 600Ω lines. Pad required should have one 600Ω input, and three 600Ω outputs, each with a loss of 9.5 db.

Example—Three incoming 600Ω lines to combine into one outgoing 600Ω line. Pad required is same as above.

6. To equalize the outputs of several speakers connected to a common source.

Example—Total power output equals 10 watts at 4 ohms. Connect this across four 16 Ω speakers, three to have an output of 2.5 watts each, but the fourth to be a monitor speaker with an output of only 0.5 watt. Pad required is 16/16 Ω with a loss of 7 db.

7. As a laboratory standard of fixed attenuation.

Example—Fixed pads can be substituted for more expensive attenuation networks in locations where the loss is to be held constant.

CIRCUITS: In the following fixed attenuator section, "T" and "BH" circuits are listed. In addition to these circuits, "H", "L", "0", " π ", and other types of networks are available upon request. Since a "T" or "BH" is equivalent to the remaining types of circuits for most applications, we have concentrated on these networks.

MINIMUM LOSS PADS: Included in the following section is a listing of minimum loss networks. For each ratio of impedance input to impedance output, there is a definite minimum loss, below which a network cannot be made. This minimum loss can be calculated by the equation—

N = 20 Log₁₀ (R +
$$\sqrt{R^2-1}$$
)
where R² = impedance ratio or $\frac{Z_1}{Z_2}$
and N = decibel loss

For example a pad having a 600Ω input and a 1200Ω output will have a minimum loss of 7.655 db.

BRIDGING PADS: Bridging type pads are also listed in this section. These not only have a minimum loss caused by an impedance change, but an added bridging loss which can be calculated by the equation—

$$= 10 \log_{10} R^2$$

where $R^2 = impedance ratio and N = decibel loss$

For example, in selecting a pad for bridging use, having a high input impedance and low output impedance, the total loss is-

 $N = 20 \log_{10} (R + \sqrt{R^2 - 1}) + 10 \log_{10} R^2$

FIXED ATTENUATORS

IMPEDANCE		DB LOSS MINIMUM			DB LOSS	MAXIMUM		
Input	Output	ALL TYPES	T-950	T-154	T-691	H-950	H-154	H-691
30	30	0	50	100	50 55	50 50	50 50	50 - 50
30 30	50 150	6.47 12.54	55 60	100 100	55 60	55	55	55
30 30	200	13.91 14.95	60 65	100 100	60 65	55 55	55 55	55 55
30	250 500	18.11	65	100	65	60	60	60 60
30	600 30	18.92 6.47	65 55	100 100	65 55	60 50	60 50	50
50 50	50	0	55	100	55	50	50 55	50 55
50 50	150 200	9.96 11.44	60 65	100 100	60 65	55 60	60	60
50	250 500	12.54 15.79	65 65	100 100	65 65	60 60	60 60	60 60
50 50	600	16.63	70	100	70	60	60 55	60 55
150	30	12.54 9.96	60 60	100	60 60	55 55	55	55
150 150	150	0	65	100	60	60	60 60	60 60
150 150	200 250	4.77 6.47	70 70	100 100	70 70	60 65	65	65
150	500 600	10.52 11.44	70 75	100 100	70 75	65 65	65 65	65 65
150 150	3,000	18.92	80	100	80	75 55	75 55	75 55
200	30	13.91 11.44	60 65	100 100	60 65	60	60	60
200	150	4.77	65 70	100	70 70	60 65	60 65	60 65
200	200 250	4.18	70 70	100 100	70	65	65	65
200	500 600	8.96 9.96	75 75	100 100	75 75	65 70	65 70	65 70
250	30	14.95	65 65	100 100	65 65	55 60	55 60	55 60
250	50 150	12.54 6.47	65	100	65	65	65 65	65 65
250	200	4.18	70	100 100	70 70	65 65	65	65
250	500	7.65	75	100	75	70 70	70 70	70
250 500	600 30	8.73 18.11	75 65	100 100	65	60	60	60
500 500	50 150	15.79 10.52	65 70	100 100	65 70	60 65	60 65	60 65
500	200	8.96	75	100	75 75	65 70	65 70	65 70
500 500	250 500	7.65	75	100 100	75	70	70	70
500	600	3.77	80	100	80 85	70	70 80	70
500 500	5,000 10,000	15.79 18.92		100	90		85	85
500 600	20,000	21.97 18.92	65	100 100	90 65	60	85 60	85 60
600	50	16.63	70	100	70	60 65	60 65	60 65
600 600	150 200	11.44 9.96	75 75	100 100	75 75	70	70	70
600 600	250 500	8.73 3.77	75	100 100	75 80	70 70	70 70	70 70
600	600	0	80	100	80 90	75	75	75
600 600	5,000	14.94		100 100	90		80 85	80 85
600	20,000	21.18		100	95		90	90

STANDARD OCTAL SOCKET TERMINAL ARRANGEMENT

T-691	H-691
#1-term. case ground #2-open #3-output #4-input #5-open #6-open #7 & 8-''C''	#1-term. case ground #2-open #3 & 6-output #4 & 5-input #7 & 8-Common

TYPE T-950 & H-950

Circuit: T-950 – "T" Network H-950 – Balanced "H" Network Accuracy: ± 2% Maximum Dissipation: 0.6 Watt

TYPE T-154 & H-154

NOTE: Special impedances other than those shown may be secured at no additional cost. The maximum and minimum loss values indicated for each pair of impedances represent the limits within which this type of pad can be made.

The input & output terminals of these networks are reversible. For example a 600/150 ohm pad may be used as a 150/600 ohm pad. NOTE: It is necessary to externally connect the two "C" terminals together on the H-950 series.

TYPE T-691 & H-691

Circuit: T-154 – "T" Network H-154 – Balanced "H" Network Accuracy: \pm 2% Maximum Dissipation: 1.0 Watt

Circuit: T-691 — "T" Network H-691 — Balanced "H" Network Accuracy: ± 1% Maximum Dissipation: 1.0 Watt

TAPPED FIXED NETWORKS SERIES 1030 & 1230

The primary function of the Series 1030 and 1230 Networks is to provide a tamper proof method of adjusting or setting the level by means of soldered connections. These tapped type units are useful in accurately tracking equipment in production and for re-tracking equipment in the field after the replacement of a major component.

Түре	IMPEDANCE		CE	CIRCUIT	RESISTOR ACCURACY*	DESCRIPTION			
	K	F	G						
1030				"т"	±5%				
1030-KW, FW, GW					±2%	0 to 40 db in 1 db steps as follows: 1, 2, 3, 4, 10 and 20 db fixed loss			
1230				"Н"	±5%	networks.			
1230-KW, FW, GW	-				±2%				
1031			VU me resisto the typ curacy	ter multiplier network r and fixed 3900/3900 \pm 30 VU meter from $+$ \pm 5%.	consisting of a cor $\Omega\Omega$ "T" networks for e -4 to $+24$ VU, in one	mbination of a 3600Ω extending the range of VU steps. Resistor ac-			
1031-A	Electrically the same as 1031 except $\pm2\%$ resistors are used for greater accuracy.								
1032		Zero adjusting network containing the series resistor required for the VU meter, together with ten adjustable taps for adjusting the meter ± 0.5 db in 0.1 db steps. Resistor accuracy $\pm 2\%$.							

Series 1030 = A = 1%" B = 1%" Max. Series $1230 = A = 1\frac{3}{4}'' B = 1\frac{5}{8}'' \pm \frac{1}{32}$

10 C 20 С

TYPE 1030

www.SteamPoweredRadio.Com

CODE

TERMINAL

*Resistor accuracies of $\pm 1\%$ can be supplied-prices upon request.

G

KEY TO TERMINAL IMPEDANCES

Special impedances or decibel losses may be obtained on request.

F

150/150 500/500 600/600

ĸ

TYPE 1032

TYPE 1230

MULTIPLE INPUT & OUTPUT NETWORKS

SERIES 1130 BRANCHING NETWORKS

The networks in this series may be obtained with a single input and multiple output, or a multiple input and a single output. "T" and "H" circuits are available for each type listed below. All units are designed for minimum loss. The maximum level of these pads is +24 VU.

SINGLE INPUT MULTIPLE OUTPUT PADS

		NO. OF	NO. OF	DB		TERMINAL NUMBERS
TYPE	CIRCUIT	INPUTS	OUTPUTS	LOSS	INPUT	OUTPUT
1130-1	"H"	1	2	6.0	1-2	3-4, 5-6
1130-2	"H"	1	3	9.5	1-2	3-4, 5-6, 7-8
1130-3	"H"	1	4 .	12.0	1-2	3-4, 5-6, 7-8, 9-10
1130-4	"H"	1	5	14.0	1-2	3-4, 5-6, 7-8, 9-10, 11-12
1130-5	"H"	1	6	15.6	1-2	3-4, 5-6, 7-8, 9-10, 11-12, 13-14
1130-6	"H"	1	8	18.1	1-2	3-4, 5-6, 7-8, 9-10, 11-12, 13-14, 15-16, 17-18
1130-7	"H"	1	10	20.0	1-2	3-4, 5-6, 7-8, 9-10, 11-12, 13-14, 15-16, 17-18, 19-20, 21-22
1130-8	"T"	1	2	6.0	1-2	3, 5*
1130-9	"Т"	1	3	9.5	1-2	3, 5, 7*
1130-10	"T"	- 1	4	12.0	1-2	3, 5, 7, 9*
1130-11	"T"	1	5	14.0	1-2	3, 5, 7, 9, 11*
1130-12	"T"	1	6	15.6	1-2	3, 5, 7, 9, 11, 13*
1130-13	"Т"	1	8	18:1	1-2	3, 5, 7, 9, 11, 13, 15, 17*

MULTIPLE INPUT SINGLE OUTPUT PADS

		NO. OF	NO. OF	DB	TERMINAL NUMBERS	
TYPE	CIRCUIT	INPUTS	OUTPUTS	LOSS	INPUT	OUTPUT
1130-14	"Н"	2	1	6.0	1-2, 3-4	5-6
1130-15	"H"	3	1	9.5	1-2, 3-4, 5-6	7-8
1130-16	"H"	4	1	12.0	1-2, 3-4, 5-6, 7-8	9-10
1130-17	"H"	5	1	14.0	1-2, 3-4, 5-6, 7-8, 9-10	11-12
1130-18	"H"	6	1	15.6	1-2, 3-4, 5-6, 7-8, 9-10, 11-12	13-14
1130-19	"H"	8	1	18.1	1-2, 3-4, 5-6, 7-8, 9-10, 11-12, 13-14, 15-16	17-18
1130-20	"H"	10	1	20.0	1-2, 3-4, 5-6, 7-8, 9-10, 11-12, 13-14, 15-16, 17-18, 19-20	21-22
1130-21	"Т"	2	1	6.0	1, 3*	5
1130-22	"Т"	3	1	9.5	1, 3, 5*	7
1130-23	"T"	4	1	12.0	.1, 3, 5, 7*	9
1130-24	"Т"	5	1	14.0	1, 3, 5, 7, 9*	11
1130-25	"T"	6	1	15.6	1, 3, 5, 7, 9, 11*	13
1130-26	a r n	8	1	18.1	1, 3, 5, 7, 9, 11, 13, 15*	17

*Even number terminals are connected together for use as common ("C") terminal.

Terminal impedance: $600/600\Omega$. Other impedances are obtainable.

RESISTOR ACCURACY: ±2%.

TYPICAL "T" CIRCUIT

TYPICAL "H" CIRCUIT

PRINTED CIRCUIT ATTENUATOR

• Extremely low torque with no detent

• Printed circuit for uniformity of operation

- Sealed unit—dust-free atmosphere
- Gold-plated contacts for low noise and long life

Daven Type 1020 Printed Circuit Attenuators are low impedance controls for use in broadcast equipment and public address systems. A specific application would be as mixer or master controls in broadcast or recording consoles. Because of their compact design they are ideal for use in portable equipment or installations where limited mounting space is a factor.

SPECIFICATIONS

Accuracy: Individual resistors are calbrated to an accuracy of $\pm 5\%$.

Frequency Response: No appreciable change in db attenuation or variation in terminal impedance over the range of 0 to 20 kc.

Insertion Loss: (ladder only) For 1:1 impedance ratio the initial loss is 6 db. For 1:2 impedance ratio the initial loss is 2 db

Impedance Characteristics: (ladder only) The input is constant except near off position and the output falls on the first few steps (See curve on Page 9).

Switch Noise Level: No indication above associated circuit and tube noise when switch is operated at extremely low levels.

Direction of Rotation: For increasing attenuation, counter clockwise.

Shaft: 0.250 Dia. \pm .001 Stainless Steel.

Bearings: Shaft bearings are free turning.

Shield: Totally enclosed and dust-proof.

Mounting: Single hole mounting. Two hole mounting bracket available.

Contact Spacing: 15 degrees between centers.

Rotation: Total degree of rotation 300 degrees.

Continuous Rating: 0.6 watts provided voltage does not exceed 100 volts.

Peak Audio Rating: Up to 2.5 watts provided voltage does not exceed 200 volts.

DUAL DECK

	TYPE		
UNBALANCED LADDER	BALANCED LADDER	۳۳	ATTENUATION
LA-1020-K, KU, G, UG*	BAL-1020-A, B, K, KU, KG, D, E, EF, F, G	T-1020-A, B, C, K, KU, KG, D, E, F, G	20 steps, 2 db per step. Tapered on last steps to cut-off (in- finity). No detents.
LA-1022-K, KU, G, UG*	BAL-1021-A, B, K, KU, KG, D, E, F, G	T-1021-A, B, C, K, KU, KG, D, E, F, G	20 steps, 2 db per step. No taper, last step cut-off (infinity). Detents.

POTTERMINAL
IMPEDANCEATTENUATIONCP-1020-T*100,00020 steps, 2 db per step. No taper, last
step cut-off (infinity). Detents.CP-1024-T*100,00020 steps, 2 db per step. Tapered on last
steps to cut-off (infinity). No detents.

*Available for stereo use in double deck units. When ordering add 2 in front of Cat. No. i.e., 2LA-1020-K $\,$

The above attenuators are available with cueing position. Add letter "Q" after the type letters, for example, LAQ-1020-G would be a 600/600 ohm ladder with a cueing position.

Impedances or decibel steps other than those shown can be made available if the quantity is sufficient.

*Available for stereo use in double deck units. When ordering add 2 in front of Cat. No. i.e., 2CP-1020-T $\,$

Not Available With Cueing Position

Impedances or decibel steps other than those shown are available if the quantity is sufficient. Knob and Indicator Plate furnished upon request at slight addi-

tional cost.

(B) (B) (B)

If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com 1¾ -¼ SINGLE ____ 2¾ ″ DUAL

						TERM	INAL	IMPE	DANC	E				No.	ATT	ENUATION		CONTACT SPACING	DEGREE
USE	TYPE	A	B	c	ĸ	KU	KF	KG	D	E	EF	F	G	NO. OF STEPS	DB PER STEP	TAPER	DETENTS	BETWEEN	
Low impedance controls for broadcast and	2LA-350													20	2	Last Steps To Cut-off	No	15°	300°
public address systems.	2LA-352							1000						20	2 (off pos.)	No	Attached	15	300-
Same as 2LA-350, but with 10 additional	2LA-130													30	1.5	Last Steps To Cut-off	No	11.25°	227 E º
steps of attenuation.	2LA-133													30	2 (off pos.)	No	Attached	d 11.25	337.5°
Same as 2LA-350, but with "X" terminal for resistor tie point.	LA-11290													20	2	Last Steps To Cut-off	No	15°	300°
Compact Bridged "T" for use where space is	2T-255													20	2	Last Steps To Cut-off	No	- 15°	300°
at a premium.	2T-256		all and				10000				Sec. 1			20	2 (off pos.)	No	Attached		
General Sound work.	2T-320		100	Sec.										20	2 (off pos.)	No	Attached	15°	300°
Suited for both low and high level mixing.	2T-321													20	2	Last Steps To Cut-off	No	15	500
Provides 10 extra steps which may be used to	2T-330													30	1.5	Last Steps To Cut-off	No	11.25°	337.5°
reduce the attenuation/step or increase overall range.	2T-331							1						30	1.5 (off pos.)	No	Attached	11.25°	337.5
Sturdy, compact — for a wide range of control	2T-730													30	1.5	Last Steps To Cut-off	No	11.25°	337.5°
in a limited space.	2T-731		1						11					30	1.5 (off pos.)	No	Attached	11.25	007.0

STEREO ATTENUATORS — "T" AND "LA" UNBALANCED LADDERS

KEY TO AVAILABILITY & TERMINAL IMPEDANCES

📕 Standard 🔲 Available as special order

22

LETTER CODE	A	АН	В	BJ	н	с	к	ку	KG	D	E	EF	F	G
TERMINAL IMPEDANCE	30/30	30/60	50/50	50/100	75/75	125/125	150/150	150/300	150/600	200/200	250/250	250/500	500/500	600/600
INSERTION LOSS UNBALANCED LADDERS	6	2	6	2	6	6	6	2	9.7	6	6	2	6	6
INSERTION LOSS "T" ATTENUATORS	0	7.7	0	7.7	0	0	0	7.7	11.4	0	0	7.7	0	0

Tol. Dec. \pm .001 Fractions \pm 1/32

Tol. Dec. $\pm .001$ Fractions $\pm 1/32$

DEFINITION: Under this group we list those types which have been designed for stereo use. The "T" attenuators have a zero insertion loss for 1:1 impedance ratios and constant impedance, both in and out on all steps of control. The "Unbalanced Ladders" offer consecutive resistor sections. These are recommended if one side of the circuit is at ground potential or may be grounded.

CUEING: In addition to the normal attenuation function, Daven stereo controls may be obtained with a built-in cueing circuit. In these controls, provision is made at the extreme attenuation position for connecting the incoming signal to a cue circuit before FADING IN the signal. To order add the letter Q after the type letters. For example a 2LA-350-G with cueing feature is type 2LAQ-350-G.

CIRCUITS: For specific circuit information please refer to page 9 on the type 2LA- units listed, and to page 11 tor the type 2T- units.

Tol. Dec. \pm .001 Fractions \pm 1/32

Martin and a constraint and a constraint

PAGE 28

INTERPHONE AMPLIFIERS MODELS 90D & 90C

GENERAL: The Model 90D and 90C transistorized interphone amplifiers are designed to meet the most stringent audio communications requirements. They replace the Western Electric Type 101A induction coils commonly used in interphone systems. Each has terminals for fixed or variable sidetone and level control and operates independent of 24 Volt "talk" bus polarity to protect against burnout. Both the 90C and 90D are designed to operate with a Western Electric Type 52A Telephone Headset or equivalent.

TYPICAL VOLTAGES CONFERENCE CONNECTED WITH ONE COIL

	90D A	MPLIFIER			90C AMPLIFIER	
No. of Stations	AC Volts Output	DC Volts L1/L2	DC Volts on Amp.	AC Volts Output	DC Volts L1/L2	DC Volts on Amp
2	4.2	10	8.5	1.0	8.0	6.5
4	4.0	9.5	8.0	.98	8.0	6.5
6	4.0	9.5	8.0	.96	8.0	6.5
8	3.8	9.0	7.5	.95	7.5	6.0
10	3.8	9.0	7.5	.94	7.5	6.0
15	3.6	8.7	7.25	.9	7.5	6.0
20	3.4	8.5	7.0	.87	7.0	5.5
25	3.2	8.4	6.5	.85	7.0	5.5
30	3.0	8.0	6.5	.8	6.5	5.0
35	2.8	8.0	6.5			
50	2.5	7.5	5.5			
75	2.0	6.5	5.0			
100	1.6	5.5	4.3		A STREET OF	
200	.6	4.0	2.5			
				STATE STATE	THE REPORT OF A DECK	

Model 90D

L2 L1

SPECIFICATIONS:

Gain: **Frequency Range:** Sidetone Level: Sidetone Control:

Number of Conference Connected Units Up to 200. **Operating Voltage: Operating Current:** Size: Weight: 2.5 oz. Headsets: Source Voltage:

28 db maximum. ± 2 db 400 — 5000 Hz. -20 db min. from received level at sidetone null. Provision for external fixed or adjustable sidetone null control, 0 to 500 ohms. Recommended 5 to 10V D.C. "talk bus" L1 to L2 (either polarity). 30 milliamperes per amplifier at 7.5V D.C. (15V max.) Level Control: Provision for fixed or variable external level control, 0 to 250 ohms. 13/4" lg. x 11/2" wd. x 11/4" ht. Designed to operate with a Western Electric Type 52A Telephone headset, or equivalent. \pm 24V D.C. through one WE274R Retardation coil.

Loudspeaker: Approx. 45 ohms voice coil impedance. Retardation Coil: WE274R or 412AR (ADC Products, Minn.).

Model 90C

20 db maximum.

±2 db 400 - 5000 Hz.

-20 db min. from received level at sidetone null.

Provision for external fixed or adjustable sidetone null control, 0 to 500 ohms.

Maximum 32

Recommended 5 to 10V D.C. "talk bus" L1 to L2 (either polarity). 50 milliamperes per amplifier at 7.5V D.C.

Provision for fixed or variable external level control, 0 to 250 ohms. 13/4" Ig. x 11/2" wd. x 11/4" ht.

2.5 oz.

Designed to operate with a Western Electric Type 52A Telephone headset, or equivalent. $\pm 24V$ D.C. through one WE274R Retardation coil for every ten

stations on the line.

WE274R or 412AR (ADC Products, Minn.).

ATTENUATION NETWORKS

AUDIO FREQUENCY / MODEL NO. 690 & 693 SERIES

- Decade Type-Direct Reading Selectable Input and Output Impedance Usable to 50 KC
- O to 111 DB in 1 DB Steps or O to 110 DB in 0.1 DB Steps "T" and Balanced "H" Versions Available Portable or Rack Mounted

Models 690 and 693 Series Attenuation Networks are decade type, direct reading units providing reliable performance throughout the audio frequency spectrum.

Used as secondary attenuation standards, they are especially useful in the performance of general laboratory or production tests where extreme accuracy is secondary. They are used for low level testing at audio frequencies, and can be used at frequencies up to 50,000 cycles with very little decrease in accuracy.

An outstanding feature of these attenuation networks is flexibility; input and output impedances may be changed by means of convenient plug-in pads, available in a broad range of values. Both "T" and Balanced "H" versions of the 690 and 693 series are available as standard units.

They are available as portable or rack mounted units.

690

Input and output impedance adjusting pads are conveniently located and removable from the front panel. Series 690 networks come with either balanced (Balanced "H") or unbalanced ("T") networks. The two dial models have a range of 0 to 110 db in steps of 1 db. The three dial models have a range of 0 to 111 db in steps of 0.1 db. The models with balanced networks are arranged so they may be used as unbalanced networks with the same attenuation range, but with one-half the base impedance.

SPECIFICATIONS:

Specifications shown are standard. Variations to fit individual customer requirements are available on request.

	MO	DEL DESCR	STANDARD IMPEDANCE MATCHING PADS							
	Rack	Basic			INF	PUT	OUT	PUT	IMPED	LOSS
Portable	Mounting	Imped.	Circuit	Range	Т	Bal H	Т	Bal H	(ohms)	(db)
T-690-C	T-690-CR	600/600	T	0-110 db in 1 db steps	6811 6812	6831 6832	6851 6852	6871 6872	500 500	3.77 5.00
H-690-D	H-690-DR	600/600	Bal. H	0-110 db in 1 db steps	6813* 6814 6815	6833** 6834 6835	6853* 6854 6855	6873** 6874 6875	600 250 250	0 8.74 10.00
T-693	T-693-R	600/600	T	0-111 db in 0.1 db steps	6816 6817	6836 6837	6856 6857	6876 6877	200 200	9.96
H-693	H-693-R	600/600	Bal. H	0-111 db in 0.1 db steps	6820 6821	6840 6841	6860 6861	6880 6881	50 50	16.63 20.00

Model 690 Model 693 Attenuation Range: 0-110 db 0-111 db Impedance: 600/600 ohms Input and output impedances may be changed by changing plug-in pad. $\pm1\%$ at 1,000 cps $\pm2\%$ 0 to 20,00 cps Range may be extended to 50,000 cps with small decrease in accuracy Power Input: 28 dbm (0.6 watt) Switches: Heavy duty silver alloy con-tacts, multi-leaf rotor and sip ring return, positive wiping with individually sprung switch arm leaves Terminals: Jack-top binding posts Construction: All metal, two-tone grey cabinet. Also available for rack mounting

*Standard in "T" models unless otherwise specified. **Standard in Balanced "H" models unless otherwise specified. Other impedances available upon request.

AUDIO VIDEO FREQUENCY / MODEL NO. 790 & 795

• Decade Type—Direct Reading • Wide Frequency Range: 0 to 10 MC • 600 Ohms Impedance

• 0 to 111 DB in 1 DB Steps or 0 to 110 DB in 0.1 DB Steps • Positive Detent—Silver Alloy Switch Contacts

• Portable—Rugged • Both "T" and Balanced "H" Units Available

Model 790 and 795 Attenuation Networks are portable, ruggedly constructed, decade type, direct reading units providing accurate performance into the low radio frequency spectrum.

The instruments cover a range from 0 to 10 mc. They have positive detent action and mechanical stops incorporated into each decade.

Stray capacitance and frequency discrimination are minimized through precision design. Silver alloy switch blades and contacts guarantee reliable long term operation.

These attenuator networks are general purpose instruments for use in laboratories, quality control departments and test facilities. They are particularly useful for making accurate measurements of gain or loss on filters, trans-formers, amplifiers and other equipment.

Power Input: 30 dbm (1 watt)

Both models are equipped with jack-top binding posts.

SPECIFICATIONS:

795

Variations to fit individual customer requirements are available on request.

	Model 790	Model 795	Switches:	Heavy duty solid silver allo switch rotor. Each leaf of t	he switch arm is individ-
Attenuation Range:	0-110 db in 1 db steps	0-111 db in 0.1 db steps		ually sprung to provide self pressure, assuring low and u	iniform contact resistance
Weight:	103⁄4 lbs	15½ lbs	Terminals:	Jack-top binding posts, 3/4 minal of "T" units ground	" spacing. Common ter- ed to chassis
Impedance:		600 ohms		Common terminal of "H" u	nits floating
Resistor Accuracy:	±0.25%	±0.25%	Construction:	All metal two-tone gray cabi Model 790	inet Model 795
Attenuation				51/2" x 10" x 71/4"	51/2" x 12" x 6-13/16"
Accuracy:	\pm 0.1 db at 1000 cps when terminad	minated in a resistive		Rack mounting available on	special order
Fraguanay					

Characteristics:

0.1 db per step and 1 db for step decades— \pm 0.2 db, 0 to 10 mc 10 db per step— \pm 0.5 db, 0 to 0.5 mc (with 90 db setting \pm 0.5 db at 1 mc Lower values within this tolerance up to 10 mc

Apple of the second se second sec

RADIO FREQUENCY / MODEL NO. 640 & 650

High Frequency: DC to 225 MC
 Constant Impedance: 50 or 73 Ohm
 Type "N" or "BNC" Connectors

RF Attenuators 640/650 series are designed for both laboratory and production use.

Compact and flexible, available in 8 or 10 steps of attenuation; either 1 or 2 decibel steps with a total loss of 80 or 100 db, these networks have constant impedance for input and output.

Model 640 and 650 are mounted in a metal case while series 640R and 650R are available for rack

model of and oso are modified in a metal case while series 640K and 650K are available for fack mounting.

SPECIFICATIONS:

Frequency Range: Shielding: Impedance:	DC to 225 mc, up to 100 db total All units are individually shielded 50 or 73 ohms (other impedances are available
	upon request, and will be shown by the dash num- ber after the type number)
Circuit:	Constant input and output impedance, unbalanced
Impedance Accuracy:	Essentially flat from 0-225 mc up to 100 db
Resistor Accuracy:	Within $\pm 2\%$ at DC
Level of Operation:	+24 db (¼ watt) maximum input
Mounting:	Series 640/650 are portable type equipments contained in a gray metal case $10'' \text{ Ig x } 5''$ wide x 5'' deep
	Series 640R/650R are designed to mount on a standard 19" wide relay rack
Dimensions:	Series 640 and 650-5" x 10" x 5"
	Series 640R and 650R—5½ x 19" For rack mounting
Connectors:	Receptacles are supplied. Cable plugs required (not furnished)

ATTENUATION

MODEL	IMPEDANCE	RECEPTACLE	PUSH BUTTONS	DB PER Step	TOTAL LOSS
640-50 641-50	50 ohms	"N" "BNC"	8	1	80 80
650-50	50 50	"N"	10	i	100
651-50	50	"BNC"	10 10	i	100
650-73 651-73	50 73 73	"N" "BNC"	10	1	100

RADIO FREQUENCY / MODEL NO. 540 & 550

High Frequency: DC to 225 MC
 Push Button, Additive
 Impedance 50 or 75 Ohms

• Type "N" or "BNC" Connectors

R F Attenuators 540/550 series are designed for inserting accurate amounts of loss into a circuit without altering other characteristics of the circuit.

They consist of groups of pi type networks with each individual network controlled by a push-button switch. The push-buttons permit any combination of buttons to be selected and locked at one time.

Model 540 has four (4) push-button switches, and model 550 has five (5) push-button switches. RFA models are furnished with N or UG/58-U receptacles, while RFB models are furnished with BNC or UG/185-U receptacles on each end.

Typ	ical	V.S.	W.R	

MODEL	70 MC	150 MC	225 MC
RFB-540-50 RFA-550-50	1.25:1 max 1.25:1 max	1.35:1 max 1.35:1 max	2.0:1 max 2.0:1 max
RFB-540-73	1.1:1 max	1.35.1 max	1.25:1 max

SPECIFICATIONS:

er controntente.			
Impedance:	Standard impedances are 50 ohm or 73 ohm. Indicated by -50 or -73 after type number shown in table		
	Essentially flat from 0 to 225 mc		
. Circuit:	Constant input and output impedance, unbalanced		
Resistor Accuracy:	Within \pm 2% at D.C.		
Connectors:	Receptacles are supplied Cable plugs required are as follows:		
	Attenuator	Cable Plug	
	RFA Series RFB Series, 50 ohms RFB Series, 73 ohms	UG-21 A/U UG-88/U UG-260/U	
Frequency Range:	DC to 225 mc		
Impedance Accuracy:	Terminal impedance of from 0 to 225 mc	loss network is essentially flat	
Mounting:	Series-540 two #10-32 s Series 550-two #10-32 s Holes for push rods should	crews on 7" centers	

Push rods are on 13%" centers with the end push rods 34" from the mounting hole center

Туре	No. of Buttons	Loss per button	Total Loss
RFA and RFB-540	4	1, 2, 3, 4 db	10
RFA and RFB-541	4	10, 20, 20, 20 db	70
RFA and RFB-542	4	2, 4, 6, 8 db	20
RFA and RFB-543	4	20, 20, 20, 20 db	80
RFA and RFB-550	5	1, 2, 3, 4, 10 db	20
RFA and RFB-551	5	10, 10, 20, 20, 20 db	80
RFA and RFB-552	5	2, 4, 6, 8, 20 db	40

DIVISION OF THOMAS A. EDISON INDUSTRIES GRENIER FIELD, MANCHESTER, N.H. 03103 (603) 669-0940 • TWX 710-220-1747

> If You Didn't Get This From My Site, Then It Was Stolen From... www.SteamPoweredRadio.Com